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TRPL+K: THICK-RESTART PRECONDITIONED LANCZOS+K
METHOD FOR LARGE SYMMETRIC EIGENVALUE PROBLEMS\ast 

LINGFEI WU\dagger , FEI XUE\ddagger , AND ANDREAS STATHOPOULOS\dagger 

Abstract. The Lanczos method is one of the standard approaches for computing a few eigenpairs
of a large, sparse, symmetric matrix. It is typically used with restarting to avoid unbounded growth
of memory and computational requirements. Thick-restart Lanczos is a popular restarted variant
because of its simplicity and numerical robustness. However, convergence can be slow for highly
clustered eigenvalues so more effective restarting techniques and the use of preconditioning is needed.
In this paper, we present a thick-restart preconditioned Lanczos method, TRPL+K, that combines
the power of locally optimal restarting (+K) and preconditioning techniques with the efficiency of the
thick-restart Lanczos method. TRPL+K employs an inner-outer scheme where the inner loop applies
Lanczos on a preconditioned operator while the outer loop augments the resulting Lanczos subspace
with certain vectors from the previous restart cycle to obtain eigenvector approximations with which
it thick restarts the outer subspace. We first identify the differences from various relevant methods
in the literature. Then, based on an optimization perspective, we show an asymptotic global quasi
optimality of a simplified TRPL+K method compared to an unrestarted global optimal method.
Finally, we present extensive experiments showing that TRPL+K either outperforms or matches
other state-of-the-art eigenmethods in both matrix-vector multiplications and computational time.

Key words. symmetric eigenvalue problems, thick-restart, preconditioned Lanczos, global quasi
optimality

AMS subject classifications. 65F15, 15A18

DOI. 10.1137/17M1157568

1. Introduction. The numerical solution of large sparse symmetric eigenvalue
problems is one of the most computationally intensive tasks in applications rang-
ing from structural engineering, quantum chromodynamics, material science, dy-
namical systems, machine learning, and data mining to numerical linear algebra
[10, 31, 39, 4, 45, 48, 47, 46, 15, 13, 44, 49]. Depending on the application, one may be
interested in computing a few of the smallest or largest eigenpairs, or some eigenpairs
in the interior of the spectrum. The challenge is that the size of the eigenproblems in
these applications is routinely O(107  - 109) [26]. Due to memory and computational
constraints, iterative methods that rely on sparse matrix-vector products are the only
practical solutions.

We are interested in finding the smallest eigenvalues and associated eigenvectors
of the pencil (A,B) when A,B \in \BbbR n\times n are large, sparse symmetric matrices,

Avi = \lambda iBvi, i = 1, . . . , p, p\ll n,(1.1)

where B is positive definite, [v1, . . . , vp] \in \BbbR n\times p is a B-orthonormal set of eigenvectors,
and \lambda 1, . . . , \lambda p are the corresponding eigenvalues of (A,B). For simplicity, we first

\ast Submitted to the journal's Methods and Algorithms for Scientific Computing section November
20, 2017; accepted for publication (in revised form) January 7, 2019; published electronically April
9, 2019.

http://www.siam.org/journals/sisc/41-2/M115756.html
Funding: This work was supported by NSF under grants ACI SI2-SSE 1440700 and DMS-

1719461 and by DOE under grant DE-FC02-12ER41890.
\dagger Department of Computer Science, College of William and Mary, Williamsburg, VA 23187-8795

(lwu@email.wm.edu, andreas@cs.wm.edu).
\ddagger Department of Mathematical Sciences, Clemson University, Clemson, SC 29631 (fxue@clemson.

edu).

A1013

http://www.siam.org/journals/sisc/41-2/M115756.html
mailto:lwu@email.wm.edu
mailto:andreas@cs.wm.edu
mailto:fxue@clemson.edu
mailto:fxue@clemson.edu


A1014 LINGFEI WU, FEI XUE, AND ANDREAS STATHOPOULOS

discuss our method in the context of the standard eigenvalue problem (where B is the
identity matrix) but we extend it to the generalized problem later.

Variants of Krylov subspace methods have long been used to address large-scale
eigenvalue problems [19, 27, 28, 29, 16]. The unrestarted versions of Lanczos and
Arnoldi are considered optimal methods because they obtain their solutions over the
entire set of matrix polynomials with degree up to the number of iterations. Yet, for
difficult problems they require too many iterations to converge, resulting in impracti-
cal memory and computational demands. Researchers have sought to alleviate these
problems with restarting and preconditioning.

Restarting interrupts the iteration, computes the current approximations, and
uses them to start a new iteration. The pioneering implicitly restarted Arnoldi and
Lanczos (IRL) methods perform this in a way so that the restarted vectors continue
to form a Krylov subspace [33, 2]. The thick-restart Lanczos (TRLan) method [22, 43]
is equivalent to IRL but simpler to use and numerically robust. However, when the
desired eigenvalues are poorly separated from the rest of the spectrum, restarting
causes further deterioration of convergence that thick restarting cannot fully recover.
Locally optimal restarting is a technique that can result in near-optimal convergence
when combined with thick restarting or block methods [17, 36, 34]. The technique
is also known as +K restarting, which is more descriptive of the number of locally
optimal restarting directions we keep. The resulting methods, however, do not form
Krylov spaces and cannot use efficient constructing strategies such as the Lanczos
three-term recurrence.

Near-optimal restarting techniques alone cannot address the slow convergence
caused by poorly separated eigenvalues, a fact that often appears in real applications
[50, 42]. Shift-invert transformations require matrix inversions and are typically ex-
pensive, and we do not consider them in this paper. Instead we focus on methods
that use inexact inverses, or preconditioning, to accelerate convergence. The Davidson
method and its extension, the generalized Davidson (GD) method, are prototypical
preconditioned methods [6, 23, 5, 35]. At every step they apply the preconditioner
to the current eigenvalue residual to extend the search space in a similar fashion to
Arnoldi but producing a non-Krylov space. The Jacobi--Davidson method (JD) [32] is
a special case of GD where the preconditioner is performed with an appropriately pro-
jected preconditioned linear system solver. GD can also use thick and locally optimal
restarting, a method called GD+K [36]. Note that this type of eigenvalue precon-
ditioning can be considered as a step of an optimization method [9]. Such a view
is followed by the locally optimal block preconditioned conjugate gradient method
(LOBPCG) [17], which forgoes the subspace acceleration of GD+K for a block three-
term recurrence. The search spaces of the above methods are not Krylov spaces,
which results in two disadvantages: expensive iteration costs (Rayleigh--Ritz (RR)
projection at each inner step) and selective convergence to a particular eigenpair.
The preconditioned Lanczos (PL) [24] and the inverse free preconditioned Krylov
subspace (EigIFP) methods [11] build a Krylov space of the preconditioned matrix
and thus avoid the expensive iteration costs. Although the preconditioned matrix has
different eigenvectors than (A,B), the methods invoke the RR projection of the origi-
nal matrices onto a preconditioned search subspace and can converge to one eigenpair
at a time.

In this paper, we propose a thick-restart preconditioned Lanczos+K method
(TRPL+K) to address the aforementioned problems. TRPL+K includes all three
major building blocks: thick restarting, locally optimal restarting, and precondition-
ing. Unlike GD+K, however, it employs a Krylov inner iteration based on TRLan
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to build the search space, thus avoiding the expensive RR procedure at every step
and requiring about half the memory. It also differs from JD, since it stores the
entire Krylov space. Alternatively, TRPL+K can be considered as an extension to
EigIFP (or PL) with thick and locally optimal restarting, thus offering significant
speedups. We provide a convergence analysis of a simplified version of TRPL+K
from the perspective of optimization, showing an asymptotic global quasi optimal-
ity of the method compared to an ideal unrestarted global optimal method. This
complements some limited earlier theoretical results on the convergence of the +K
technique in LOBPCG and GD+K [17, 36]. Extensive experiments demonstrate that
TRPL+K either outperforms or matches other state-of-the-art eigenmethods in both
matrix-vector multiplication counts and computational time.

In section 2 we develop a background framework on which to compare existing
and proposed methods. In section 3, we present our method for the standard eigen-
problem. Section 4 considers a simplified version of the algorithm for the generalized
eigenproblem and develops a convergence analysis. Section 5 compares the efficiency
and effectiveness of TRPL+K with other methods through experiments.

2. Background and related work. Since restarting techniques are the primary
concern of this paper, we focus our background section on a common framework in
which we can describe most current eigenmethods as well as the proposed one.

2.1. Thick restarting, locally optimal restarting, and preconditioning.
The unrestarted Lanzcos method converges optimally in terms of the number of
matrix-vector multiplications because it dynamically builds the optimal polynomial
through an efficient three-term recurrence. In practice, rounding errors cause loss of
orthogonality to previous Lanczos vectors, so we typically store all the Lanczos vectors
and perform selective or partial reorthogonalization [30, 10]. Restarting is intended
to reduce the storage requirements and computational cost of orthogonalization. Af-
ter a maximum number of iteration vectors are stored, we compute the best desired
approximations and restart. While limiting storage and computational costs per it-
eration, restarting inevitably impairs the optimality of unrestarted Lanczos since it
discards part of the information. Various techniques [25, 36, 34, 17, 21] attempt to
partially recover the lost information due to restarting.

Implicit restarting [33] performs this by dumping unwanted components (typically
unwanted Ritz vectors) by applying the implicitly shifted QR. However, this technique
is complicated to implement in a stable way [14, p. 136]. Thick restarting is math-
ematically equivalent to implicit restarting [37, 22] yet it is easier to implement in a
stable way in the Lanczos [43], Arnoldi [22], and GD [37] methods. Thick restarting
directly keeps the wanted Ritz vectors instead of dumping the unwanted ones from
the basis. Moreover, with thick restarting it is straightforward to add arbitrary (non-
Krylov) vectors to the restarted space. This is a key feature for our proposed method
where we augment the restarted space with Ritz vectors from a previous cycle. Due
to simplicity, numerically stability, and flexibility, thick restarting has been applied to
various Krylov and GD (or JD) type methods for both eigenvalue and SVD problems
[43, 22, 41, 20, 32, 37, 34, 1, 47].

The locally optimal restarting technique has been studied under different names
in the literature such as locally optimal recurrence in LOBPCG [17], +K restarting in
GD+K [36, 34], and Krylov subspace optimization [21]. There are different ways to
justify the use of this technique. One is from an optimization viewpoint that extends
the nonlinear conjugate gradient (CG) method for optimizing the Rayleigh quotient
by a RR procedure on the three successive iterates. Another viewpoint is that three
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successive Lanczos iterates are sufficient to guarantee full orthogonality of the space.
Yet another viewpoint relates the Lanczos iterates to the ones from a three-term recur-
rence of the linear CG on the JD correction equation. Regardless of the viewpoint, the
idea of using Ritz vectors from both the current and the previous iteration has given
rise to methods that converge near-optimally for seeking one eigenpair under limited
memory, especially when combined with block methods or thick restarting [17, 34].
Rigorous analysis, however, has been difficult. In [36] the last viewpoint was analyzed
providing some bounds on how well the locally optimal restarting matches the effects
of a global optimization over the unrestarted space. In this paper, we provide an op-
timization viewpoint analysis that establishes the asymptotic global quasi optimality
of our new method by quantifying the relative difference between the locally and a
globally optimal Rayleigh quotients.

Preconditioning (inexact shift-invert) is crucial to improve the convergence of all
these methods. For large problems, as exact matrix factorizations are prohibitive or
infeasible, we focus on preconditioners such as incomplete ILU or LDLT factorization
[11]. Although GD (or JD) type methods use a preconditioner to build a general,
non-Krylov subspace, a few methods have been proposed to exploit a preconditioned
Krylov subspace [11, 24, 41]. This paper further explores this line of research.

2.2. Comparison of subspaces of various methods. We use the following
notation. A cycle refers to all the work a method performs between restarts and is
denoted by a subscript. When present, a second subscript refers to the eigenvector
index, e.g., xi,2 is the approximate eigenvector for the second smallest eigenvalue at
the end of cycle i. A matrix or block of vectors followed by parenthesis uses MATLAB
index notation. At restart, thick restarting keeps at least the p wanted Ritz vectors.
A method then continues building a basis U with m new vectors, which differentiates
most methods. In +K restarting, U is then augmented by l Ritz vectors from the
previous step (which previous step depends on the method). Thus, at the end of
the ith outer cycle, the basis is U \in \BbbR n\times q, where q = p + m + l is the maximum
basis size. For a given shift \rho , let A\rho = (A  - \rho I), \widehat A\rho = L - 1(A  - \rho I)L - T , and
a preconditioner M = L - TL - 1 \approx (A  - \rho I) - 1. The shift is usually the Rayleigh

quotient for some approximate eigenvector x, \rho (x) = xTAx
xT x

. We use the RR procedure
to extract approximate eigenpairs from span(U). \scrK m(A, u1) refers to the Krylov
subspace of dimension m of A with initial vector u1.

TRLan [43] is mathematically equivalent to implicitly restarted Lanczos. At the
end of the i+1 cycle, it forms a space KTRL which includes the p wanted Ritz vectors
obtained by RR at the end of the ith cycle and m additional Lanczos vectors starting
from the last Lanczos vector r = ui,p+m+1 of the ith cycle.

KTRL = span\{ xi,1, xi,2, . . . , xi,p,\underbrace{}  \underbrace{}  
Wanted Ritz vectors

r,Ar,A2r, . . . , Am - 1r\underbrace{}  \underbrace{}  
Lanczos iterations

\} .(2.1)

KTRL always remains a Krylov space, but it allows for a more efficient implementation
than the implicitly restarted Lanczos. TRLan is the only method we consider that
cannot use preconditioning directly, but only through shift-invert.

LOBPCG [17] forms a subspace KL at the end of cycle i + 1 from which it will
use RR to compute p approximate eigenpairs. The subspace is built by the following
locally optimal recurrence with m = p = l:

KL = span\{ xi,1, xi,2, . . . , xi,p,\underbrace{}  \underbrace{}  
Wanted Ritz vectors

Mr1,Mr2, . . . ,Mrp,\underbrace{}  \underbrace{}  
Preconditioned residual vectors

xi - 1,1, . . . , xi - 1,p\underbrace{}  \underbrace{}  
Previous Ritz vectors

\} ,(2.2)
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where xi,j is the jth Ritz vector from cycle i, \{ rj\} is its residual, and xi - 1,j is the
corresponding Ritz vector from cycle i - 1.1 Note that \{ Mrj\} are typically computed
in a block form, not one at a time through an inner iteration.

GD+K [36, 34] is an extension of GD where, at restart, l number of previous Ritz
vectors are used to augment the thick restarted basis. Thus at the end of cycle i+ 1
the subspace of size q is

KG = span\{ xi,1, . . . , xi,p,\underbrace{}  \underbrace{}  
Wanted Ritz vectors

Mr
(p)
1 , . . . ,Mr

(p+m - 1)
1 ,\underbrace{}  \underbrace{}  

Preconditioned residual vectors

x
(q - 1)
i,1 , . . . , x

(q - 1)
i,l\underbrace{}  \underbrace{}  

Previous Ritz vectors

\} .(2.3)

Here, xi,j and x
(q - 1)
i,j are the Ritz vectors computed at cycle i from the spaces KG

with size(KG) = q and size(KG) = q  - 1, respectively. r(j) denotes the residual

vector of the targeted Ritz vector x
(j)
i+1,1 at inner iteration j  - p + 1 of the current

cycle i + 1, i.e., when size(KG) = j. Without preconditioning (M = I) and with
l = 0, GD+K is equivalent to TRLan. When m = p = l = 1, GD+K is equivalent
to the locally optimal preconditioned conjugate gradient (LOPCG, or LOBPCG with
p = 1). A block version of GD+K is also possible.

PL [24] employs a preconditioned Krylov inner iteration on \widehat A\rho = L - 1(A - \rho I)L - T

to build a basis G of KP in (2.4), applies the RR of \widehat A\rho onto G to find a primitive Ritz
pair (\theta , y), and converts the Ritz pair back (\rho + \theta , L - TGy) for the original eigenvalue
problem. Additional eigenpairs are found one at a time. The size m of the Krylov
space varies dynamically.

KP = span\{ LTxi,1,\underbrace{}  \underbrace{}  
Wanted Ritz vector

\widehat A\rho (L
Txi,1), \widehat A2

\rho (L
Txi,1), . . . , \widehat Am

\rho (LTxi,1)\underbrace{}  \underbrace{}  
Lanczos iterations

\} .(2.4)

Without preconditioning PL is an explicitly restarted Lanczos with one vector (i.e.,
no thick restarting).

EigIFP [11] produces the same approximations as PL in exact arithmetic, but the
application of the preconditioner does not have to be in factorized form. The basis V
of the search space KF built by EigIFP is related to the PL's basis as U = L - TG. RR
is performed by projecting A\rho = A  - \rho I onto U , yielding the approximate eigenpair
(\rho + \theta , Uy). Since all vectors are stored, m = q  - 1. Otherwise, EigIFP has the same
limitations as PL.

KF = span\{ xi,1,\underbrace{}  \underbrace{}  
Wanted Ritz vector

MA\rho xi,1, (MA\rho )
2xi,1, . . . , (MA\rho )

mxi,1\underbrace{}  \underbrace{}  
Lanczos iterations

\} .(2.5)

The GD+K method typically demonstrates faster convergence than the rest of the
methods in terms of number of matrix-vector products because it combines both thick
and locally optimal restarting and uses subspace acceleration to obtain the ``best""
Ritz vector at every inner iteration to improve by preconditioning. However, the
faster convergence of GD+K is at the cost of applying a more frequent RR procedure,
which could be a quite expensive operation when the subspace is large [40]. Therefore,
it is unclear if the GD+K method is still the method of choice in terms of the runtime
when the matrix-vector operation is inexpensive. For large numbers of well-separated
eigenvalues, however, a block method such as LOBPCG could also be competitive.
On the other hand, PL and EigIFP can generate the inner Krylov space without the
overhead of multiple RR projections required by GD+K.

1One could use search directions instead of previous Ritz vectors for better numerical stability
as suggested in [17, 18], but both variants essentially construct the same subspace.
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3. Thick-restart preconditioned Lanczos +K method. The motivation of
our proposed TRPL+K method is to extend the computationally efficient EigIFP
method with the thick and locally optimal restarting techniques of GD+K. It can
also be viewed as an extension of TRLan to allow for locally optimal restarting and
preconditioning. We note that the JD method with CG as inner iteration and GD+K
as the outer method is even more computationally efficient per step because the inner
Krylov space does not need to be stored. However, the result of CG is a correction to a
single Ritz vector that does not benefit convergence to nearby eigenpairs, which is left
to the subspace acceleration of the outer iteration. With TRPL+K we hope that the
inner iteration generates useful correction information to all p required eigenvectors.
For simplicity, we describe the method in detail for the standard eigenvalue problem
only.

Extending EigIFP to include thick restarting is rather straightforward. With-
out preconditioning, the KF space in (2.5) is a Krylov space so it can be restarted
as in TRLan (2.1). With preconditioning, KF is still a Krylov space but of the
preconditioned matrix M(A  - \rho I). Note that if \rho differs between cycles so do the
matrices of the corresponding Krylov subspaces. At the end of cycle i + 1, the RR
must be performed on matrix A or A\rho = A  - \rho I to compute the new Ritz vectors
Xi+1 = [xi+1,1, . . . , xi+1,p]. This implies that the thick restart vectors Xi used in the
basis of cycle i+ 1 do not form vectors of a Krylov sequence. After restart, we have
T = XT

i AXi = diag([\theta i,1, . . . , \theta i,p]), but we cannot use the TRLan relations for the
subsequent Krylov vectors.

To efficiently build such an augmented Krylov space we can use a technique based
on an FGMRES-like method [3] or on the GCRO method [7, 8]. We have followed a
GCRO-like method to build a Krylov basis Gi+1 orthogonal to Xi = [xi,1, . . . , xi,p],
i.e., we build span(Gi+1) = \scrK m

\bigl( 
(I  - XiX

T
i )M(A - \rho I), (I  - XiX

T
i )Mr1

\bigr) 
, with r1 =

(A - \rho I)xi,1. This allows us to build the projection matrix T = [Xi, Gi+1]
TA[Xi, Gi+1]

without additional matrix-vector products. At step j of the inner Krylov method,
before we compute Gi+1(:, j + 1) we compute

z = AGi+1(:, j),

T (1 :p, p+ j) = XT
i z,

T (p+ 1:p+ j, p+ j) = Gi+1(:, 1:j)
T z.

(3.1)

Then, we continue with the inner method Gi+1(:, j + 1) = (I  - XiX
T
i )M(z  - \rho xi,1).

Employing locally optimal restarting to the above thick restarted preconditioned
Lanczos is more involved. At cycle i + 1, after the inner method concludes its m
steps, we perform RR to obtain Xi+1 using the space Ui+1(:, 1:m + p) = [Xi, Gi+1].
We want to augment this space with some ``previous"" directions, Xprev. A choice
similar to GD+K does not work. GD+K uses as Xprev the Ritz vectors from the
penultimate step of the Krylov method before restart, i.e., the Ritz vectors from the
subspace Ui(:, 1 : p + m  - 1) = [Xi - 1, Gi(:, 1 :m  - 1)]. The idea is that the optimal
projection over Ui(:, 1:p+m+ 1) (i.e., the next step of the unrestarted method) can
be approximated through the Ritz vectors of the last two iterations and the residual.
But our method does not optimize over the Xprev directions to expand the basis at
cycle i+ 1; it builds a Krylov space.

If we assume that our inner method was a polynomial returning only one vector
s(A)r1 (not the entire Gi+1 space of size m) to be used in the outer RR and that
we were seeking p = 1 eigenpair, the outer method would be similar to LOBPCG on
the operator s(A). For this operator, the choice for locally optimal restarting would
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be Xprev = Xi - 1, i.e., the Ritz vector at the beginning of the previous cycle. We
take the liberty to use LOBPCG's choice Xprev for our method, which we now call
TRPL+K. The space at the end of cycle i+ 1 should include Xi, Gi+1, and Xi - 1.

The order of the three blocks in the search subspace deserves a careful discussion.
Since Xi is produced from a basis that includes Xi - 1 at cycle i, it is possible to
orthogonalize the two sets implicitly and compute their interaction on the projection
matrix Ti+1 without matrix-vector products. Then, by augmenting our space not only
with Xi but with span([Xi, Xi - 1]), we could build Gi+1 as described above. However,
we noticed experimentally that this choice does not perform well.

We observed much better convergence if the previous vectors Xi - 1 were included
in the basis after Gi+1 was computed. The disadvantage is that Xi - 1 has to be
explicitly orthogonalized against the rest of the basis vectors and l matrix-vector
products have to be performed to compute the resulting T . However, the relative
expense is small for large m (inner iterations), and typically l = 1 gives very close to
optimal convergence while more previous vectors give little additional improvement.

We can now describe the space that TRPL+K builds. Let Xi = [xi,1, . . . , xi,p],
C = (I - XiX

T
i )M(A - \rho iI), and u1 = Cxi,1. Then, at the end of cycle i+1 TRPL+K

computes the Ritz vectors from the subspace

KTRPL+K = span\{ xi,1, . . . , xi,p\underbrace{}  \underbrace{}  
Wanted Ritz vector

u1, Cu1, . . . , C
m - 1u1\underbrace{}  \underbrace{}  

Lanczos iterations

xi - 1,1, . . . , xi - 1,l\underbrace{}  \underbrace{}  
Previous Ritz vector

\} .(3.2)

Algorithm 1 summarizes TRPL+K for finding p smallest eigenpairs of A. For
simplicity we also let the minimum thick restart size be p. However, the algorithm

Algorithm 1. Thick-restart preconditioned Lanczos +K method.

Input: matrix A \in \BbbR n\times n, preconditioner M \in \BbbR n\times n, p the number of desired
eigenpairs, X = [x1 . . . xp] any available initial approximations to the p eigenpairs,
xT
i xj = \delta ij , maximum basis size q, maximum number of retained previous vectors

l, maximum number of cycles maxIter
Output: approximate eigenvalues \theta 1, . . . , \theta p, and eigenvectors x1, . . . , xp.

1: Perform RR on the orthonormal set U = X = [x1, . . . , xp], T (1 :p, 1:p)\leftarrow XTAX
2: Let Y\Theta Y T = XTAX be the eigendecomposition of XTAX. Reset U,X \leftarrow UY

(the p Ritz vectors) and T \leftarrow \Theta . Set target t = 1, \rho \leftarrow xT
t Axt, X

prev \leftarrow [ ]
3: for k = 1 : maxIter do
4: Use Lanczos (3.1) to generate G containing the orthonormal basis vectors for

\scrK m((I  - XXT )M(A - \rho I), u1) and the projection T (1 :p+m, p+ 1:p+m)
5: Set U(:, 1:p+m)\leftarrow [X,G]
6: if k > 1 then
7: Orthogonalize Xprev against U(:, 1:p+m) to build U(:, p+m+ 1:q)
8: Compute the remaining T such that T = UTAU
9: end if

10: Xprev = [xprev
1 , . . . , xprev

l ]\leftarrow [xt, . . . , xt+l - 1] (up to a min(t+ l  - 1, p))
11: Compute eigenpairs of T , T = Y\Theta Y T and Ritz pairs: (\theta i, xi = UY (:, i))
12: if \| Axt  - \theta txt\| \leq \epsilon then
13: flag (\theta t, xt), remove xprev

1 from Xprev, and advance target t = t+ 1
14: end if
15: Set \rho \leftarrow \theta t, U(:, 1:p+ 1)\leftarrow [UY (:, 1:p),M(Axt  - \rho xt)], X = U(:, 1:p)
16: end for
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can thick restart with any size \^p > p. Note also that the preconditioner M may
change at every cycle with the goal to approximate (A - \rho iI)

 - 1.
Finally, we note that the algorithm can be easily extended to the generalized

eigenvalue problem, Av = \lambda Bv with B symmetric positive definite. We forgo this
description for simplicity. The analysis in the next section is based on a simplified
version of our algorithm for the generalized eigenvalue problem, aiming to compute
only the lowest eigenpair (\lambda 1, v1) (p = 1), replacing the previous Ritz vector xi - 1,1 in
(3.2) with a search direction connecting xi - 1,1 and xi,1 in two consecutive cycles. We
show the algorithm with soft locking but hard locking can also be applied.

4. Asymptotic convergence analysis of a PL+1 method. In this section,
we consider a PL+1 method (i.e., TRPL+K with p = 1 = l) for computing the lowest
eigenpair (\lambda 1, v1) of (A,B), establishing an asymptotic global quasi optimality of the
method.

4.1. Preliminaries. Consider the matrix pencil (A,B), where A,B \in \BbbR n\times n are
symmetric, typically large and sparse, and B is positive definite. Let \lambda 1 < \lambda 2 \leq 
\cdot \cdot \cdot \leq \lambda n and \{ vi\} be the eigenvalues and eigenvectors of the matrix pencil, such that
Avi = \lambda iBvi, (vi, vj)B = vTi Bvj = \delta ij , \| vi\| B = 1, 1 \leq i, j \leq n.

Let x be an approximation to v1, the eigenvector associated with the lowest
eigenvalue \lambda 1, with the decomposition

x = v1 cos \theta + f sin \theta , where \theta \not = 0, f \bot Bv1, and \| f\| B = 1.(4.1)

This suggests that \| x\| B =
\bigl( 
xTBx

\bigr) 1
2 =

\bigl( 
\| v1\| 2B cos2 \theta + \| f\| 2B sin2 \theta 

\bigr) 1
2 = 1. Since

f \bot Bv1, it has the form f =
\sum n

j=2 sjvj , where the scalars \{ sj\} nj=2 satisfy
\sum n

j=2 s
2
j =\sum n

j=2 s
2
j\| vj\| 2B = \| f\| 2B = 1. The Rayleigh quotient of x is hence

\rho (x) = xTAx
xTBx

= xTAx = vT1 Av1 cos
2 \theta + fTAf sin2 \theta = \lambda 1 cos

2 \theta + \rho (f) sin2 \theta ,

where \rho (f) = fTAf
fTBf

= fTAf =
\sum n

j=2 s
2
j\lambda j \in [\lambda 2, \lambda n].

Proposition 4.1. Let x be a vector with \| x\| B = 1. The gradient and the Hessian
of 1

2\rho (x) with respect to x, respectively, are

\nabla 
1

2
\rho (x) =

1

xTBx
(A - \rho (x)B)x = Ax - \rho (x)Bx and(4.2)

\nabla 2 1

2
\rho (x) =

1

xTBx

\biggl\{ 
A - \rho (x)B  - 

2

xTBx
(Ax - \rho (x)Bx)(Bx)T  - 

2

xTBx
Bx (Ax - \rho (x)Bx)T

\biggr\} 
= A - \rho (x)B  - 2(Ax - \rho (x)Bx)(Bx)T  - 2Bx (Ax - \rho (x)Bx)T .(4.3)

Proof. The proof is done by letting T (\rho ) = \rho B  - A in [38, Proposition 3.1].

For small \theta , \rho (x) is a second order approximation to \lambda 1, i.e.,

\rho (x) - \lambda 1 = sin2 \theta (\rho (f) - \lambda 1),(4.4)

and hence \nabla 1
2\rho (x), i.e., the eigenresidual associated with x, is

Ax - \rho (x)Bx = (A - \rho (x)B) (v1 cos \theta + f sin \theta )

= (\lambda 1  - \rho (x)) cos \theta Bv1 + sin \theta (A - \rho (x)B) f

= sin \theta 
\bigl[ \sum n

j=2 sj(\lambda j  - \rho (x))Bvj  - sin \theta cos \theta (\rho (f) - \lambda 1)Bv1
\bigr] 
.
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Since \lambda 1 < \lambda 2 and
\sum n

j=2 s
2
j = 1, Af  - \rho (x)Bf =

\sum n
j=2 sj(\lambda j  - \rho (x))Bvj will not

vanish as \theta \rightarrow 0 and \rho (x)\rightarrow \lambda 1. Therefore, for sufficiently small \theta ,

(1 - \delta ) sin \theta \| Af  - \rho (x)Bf\| \leq \| Ax - \rho (x)Bx\| \leq (1 + \delta ) sin \theta \| Af  - \rho (x)Bf\| (4.5)

for some small \delta > 0 independent of \theta , or simply \| Ax - \rho (x)Bx\| = \scrO (sin \theta ).

4.2. A PL+1 method. The framework of a PL+1 method is summarized in
Algorithm 2. This is a special case of Algorithm 1 for p = l = 1 but extends it to
the generalized eigenvalue problem. It can also be considered an extension of the
PL method enhanced with the search direction adopted in LOPCG. It is important
to note that when X is a single vector, [Xk, Gk+1] in (3.2) is a Krylov space and
span\{ xk,1, u1, Cu1, . . . , C

m - 1u1\} = span\{ xk,1, Axk,1, . . . A
mxk,1\} (see Lemma 4.1 in

[36]). Since we only look for one eigenvalue, in the rest of this section we drop the
second subscript notation and use the subscript k to represent the cycle, hence the
simpler form in Algorithm 2.

Algorithm 2. PL+1 method for computing (\lambda 1, v1) of (A,B).

1: Choose a symmetric positive definite preconditioner M \approx (A  - \sigma B) - 1 (\sigma < \lambda 1),
tolerance \delta > 0, m > 0

2: Choose vector x0 with \| x0\| B = 1, set \rho 0 =
xT
0 Ax0

xT
0 Bx0

and r0 = (A - \rho 0B)x0.

3: for k = 0, 1, . . . , until the convergence, i.e., \| rk\| \leq \delta do
4: Form Gk containing B-normalized basis vectors of M\scrK m ((A - \rho kB)M, rk)

= span
\Bigl\{ 
M(A - \rho kB)xk, [M(A - \rho kB)]

2
xk, . . . , [M(A - \rho kB)]

m
xk

\Bigr\} 
5: Form Qk =

\biggl\{ 
[xk, Gk] (k = 0)
[xk, Gk, pk - 1] (k > 0)

, perform the RR projection and

solve QT
kAQkw = \rho QT

kBQkw for the lowest primitive Ritz pair
\bigl( 
\rho k, wk

\bigr) 
.

6: gk= Gkwk(2 :m+1)\widetilde xk+1= Qkwk=

\biggl\{ 
xkwk(1)+ gk (if k = 0),
xkwk(1)+ gk+ pk - 1wk(m+2) (if k > 0),

xk+1 = \widetilde xk+1

\| \widetilde xk+1\| B
, \rho k+1 =

xT
k+1Axk+1

xT
k+1Bxk+1

, and rk+1 = (A - \rho k+1B)xk+1.

7: \widetilde pk =

\Biggl\{ 
gk (k = 0)

gk  - 
pT
k - 1(A - \rho k - 1B)gk

pT
k - 1(A - \rho k - 1B)pk - 1

pk - 1 (k > 0)
, pk = \widetilde pk

\| \widetilde pk\| B
.

8: end for

In each outer iteration k (k > 0), at steps 4 and 5, an augmented Krylov subspace
range(Qk) = span\{ xk\} +M\scrK m ((A - \rho kB)M, rk) + span\{ pk - 1\} , i.e.,

\scrK m+1 (M(A - \rho kB), xk) + span\{ pk - 1\} ,(4.6)

is formed as the subspace for the RR projection. Algorithm 2 is slightly different
from the variant used in practice at step 7, where a commonly adopted approach sets
pk = gk + pk - 1wk(m+2), using the (m+2)nd element of primitive Ritz vector wk as
the coefficient for pk - 1. Our choice of such a particular linear combination makes it
easy to show the near conjugacy between pk - 1 and pk.

We present a preliminary convergence result for Algorithm 2, which is essentially
a restatement of [11, Theorem 3.4]. Here we incorporate preconditioning and note the
fact that the space for projection used in [11], \scrK m+1 (M(A - \rho kB), xk), is a subspace
of the one constructed by Algorithm 2 in (4.6).
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Theorem 1. Let \lambda 1 < \lambda 2 \leq \cdot \cdot \cdot \leq \lambda n be the eigenvalues of (A,B), (\rho k, xk) be the
kth iterate of Algorithm 2, and LDLT \approx (A - \rho kB) be a preconditioner where D is a
diagonal matrix of \pm 1 elements. Assume that Ck = L - 1(A - \rho kB)L - T has eigenvalues
\sigma 1 < \sigma 2 \leq \cdot \cdot \cdot \leq \sigma n and satisfies Cku1 = \sigma 1u1 with \| u1\| 2 = 1. If \lambda 1 < \rho k < \lambda 2,

then \rho k+1  - \lambda 1 \leq (\rho k  - \lambda 1)\epsilon 
2
m + (\rho k  - \lambda 1)

3
2 \epsilon m (\| L

 - 1BL - T \| 
\sigma 2

)
1
2 + \delta k, where 0 < \delta k \equiv 

\rho k - \lambda 1+
\sigma 1

uT
1 L - 1BL - Tu1

= \scrO 
\bigl( 
(\rho k  - \lambda 1)

2
\bigr) 
, and \epsilon m = minp\in \scrP m,p(\sigma 1)=1 max2\leq i\leq n | p(\sigma i)| ,

with \scrP m denoting the set of all polynomials of degree not greater than m.

Remark. The value of \epsilon m depends on the quality of the preconditioner M ap-
proximating A  - \rho kB. If M = A  - \sigma B, then (A  - \rho kB)V = BV (\Lambda  - \rho kI) and
MV = BV (\Lambda  - \sigma I), where \Lambda = diag(\lambda 1, . . . , \lambda n) is the diagonal matrix of the eigen-
values of (A,B) and V = [v1, . . . , vn] contains the corresponding eigenvectors. It
follows that M(A - \rho kB)V = V (\Lambda  - \sigma I) - 1(\Lambda  - \rho kI). That is, vi is an eigenvector of
M(A  - \rho kB) associated with eigenvalue \sigma i =

\lambda i - \rho k

\lambda i - \sigma . Since Ck = L - 1(A  - \rho kB)L - T

and L - TL - 1(A - \rho kB) have identical spectrum, \sigma i is also an eigenvalue of Ck. There-
fore, if \sigma and \rho k are close to \lambda 1, then \sigma 2, . . . , \sigma n are all close to 1, and hence
\epsilon m = minp\in \scrP m,p(\sigma 1)=1 max2\leq i\leq n | p(\sigma i)| would be fairly small with a small value of
m, indicating a fast rate of convergence of the outer iteration.

4.3. Global quasi optimality. Theorem 1 shows that Algorithm 2 converges
at least linearly with an asymptotic factor no greater than \epsilon 2m. Our goal is to explore
the role of the search directions pk (the ``+1"" strategy), which helps the algorithm
achieve a greatly improved convergence rate associated with global quasi optimality.
The global quasi optimality is defined as follows.

Definition 4.2. Consider an iterative method for computing the lowest eigenpair
(\lambda 1, v1) of a real symmetric matrix pencil (A,B) with positive definite B. Let x0 be
the starting vector, xk be the approximation obtained at step k, and \theta k = \angle (xk, v1)B =

cos - 1 (v1,xk)B
\| v1\| B\| xk\| B

be the error angle of xk. Let U1, U2, . . . be a sequence of subspaces

of increasing dimension, such that for each k \geq 1, xk \in Uk, and Ui \subset Uj for all

1 \leq i < j. Let y\ast k \in Uk be the global minimizer of the Rayleigh quotient \rho (x) = xTAx
xTBx

in Uk. Then the iterate xk achieves global quasi optimality if

lim
\theta 0\rightarrow 0

\rho (xk) - \rho (y\ast k)

\rho (xk) - \lambda 1
= 0.(4.7)

4.3.1. Linear convergence assumption. To show the global quasi optimality
of Algorithm 2, we first make an assumption of its precisely linear convergence.

Assumption 4.3. Assume that Algorithm 2 starting with initial \rho (x0) \in (\lambda 1, \lambda 2)
converges precisely linearly (not superlinearly or faster) to \lambda 1; in other words, there
exist constants 0 < \xi < \=\xi < 1, independent of the progress of Algorithm 2, such that

\xi k - j(\rho j  - \lambda 1) \leq \rho k  - \lambda 1 \leq \=\xi k - j(\rho j  - \lambda 1) for all 0 \leq j < k.(4.8)

The assumption on the existence of a lower bound \xi on the convergence factor is

realistic. Given M \approx (A  - \sigma B) - 1 with a fixed \sigma < \lambda 1, and a fixed dimension m of
the preconditioned Krylov subspace, extensive experiments suggest that Algorithm 2
exhibits simply linear convergence as the outer iteration proceeds.

Assumption 4.3 has an equivalent form in terms of angles. Consider two iterates
xj = v1 cos \theta j + fj sin \theta j and xk = v1 cos \theta k + fk sin \theta k, 0 \leq j < k, where fj , fk \bot Bv1,
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\| fj\| B = \| fk\| B = 1, and \| xj\| B = \| xk\| B = 1. From (4.4), we have (4.8) equivalent

to \xi k - j sin2 \theta j(\rho (fj) - \lambda 1) \leq sin2 \theta k(\rho (fk) - \lambda 1) \leq \=\xi k - j sin2 \theta j(\rho (fj) - \lambda 1), i.e.,

\sqrt{} 
\xi 
k - j
\sqrt{} 

\rho (fj) - \lambda 1

\rho (fk) - \lambda 1
sin \theta j \leq sin \theta k \leq 

\sqrt{} 
\=\xi 
k - j
\sqrt{} 

\rho (fj) - \lambda 1

\rho (fk) - \lambda 1
sin \theta j .(4.9)

4.3.2. Relevant spaces. To study the global quasi optimality, we define

Wk = span\{ g0, . . . , gk - 1\} = span\{ Md0, . . . ,Mdk - 1\} , where(4.10)

d\ell \in \scrK m ((A - \rho \ell B)M, r\ell ) , and

Uk = span\{ x0\} +Wk.(4.11)

Lemma 2. For all k \geq 1, Wk = span\{ p0, . . . , pk - 1\} and xk \in Uk.

The proof is straightforward by induction and omitted. Next, we make an impor-
tant assumption about Wk for the subsequent analysis.

Assumption 4.4. Assume that there is a constant \delta > 0, independent of \theta 0 =
\angle (x0, v1)B , such that \angle (v1,Wk) \geq \delta for all k \geq 1.

Remark. The above assumption is guaranteed to hold if the preconditioner M is

equipped with the projector P = I  - x0x
T
0 B

xT
0 Bx0

. That is, let M = PTMP be the precon-

ditioner for Algorithm 2 such that range(M\dagger ) = (span\{ Bx0\} )\bot . If x0 is sufficiently
close to v1, then Wk \subset range(M\dagger ) \approx span\{ v2, . . . , vn\} , and hence \angle (v1,Wk) \geq \delta . The
JD method uses this strategy to enhance the robustness of the convergence.

4.3.3. Preliminary results. We present a few preliminary results useful for the
proof of the main theorems in the next section. For the sake of readability, we move
most of the technical proof of our results to the appendix.

Lemma 3. Let x \approx v1 in (4.1), and let p be a descent direction for \rho (x) such that
(p,\nabla \rho (x)) < 0. Assume that there exists a \delta > 0 independent of \theta = \angle (x, v1)B such
that \rho (p) - \rho (x) \geq \delta . Then the optimal step size \alpha \ast minimizing \rho (x+\alpha p) is the unique
or the smaller positive root of a(x, p)\alpha 2 + b(x, p)\alpha + c(x, p) = 0, where

a(x, p) = (pTAp)(pTBx) - (pTBp)(pTAx) = \| p\| 2BxT (A - \rho (p)B)p,(4.12)

b(x, p) = (pTAp)(xTBx) - (pTBp)(xTAx) = \| x\| 2BpT (A - \rho (x)B)p

= \| x\| 2B\| p\| 2B
\bigl( 
\rho (p) - \rho (x)

\bigr) 
\geq \| x\| 2B\| p\| 2B\delta > 0, and

c(x, p) = (pTAx)(xTBx) - (pTBx)(xTAx) = \| x\| 2BpT (A - \rho (x)B)x < 0.

Lemma 4. Let x be an approximation to v1 with decomposition (4.1), p be a
descent direction for \rho (x), and \delta > 0 be a constant independent of \theta = \angle (x, v1)B,
such that \rho (p)  - \rho (x) \geq \delta > 0, and \alpha \ast the optimal step size minimizing \rho (x + \alpha p).
Then for sufficiently small \theta , with a, b, and c defined in (4.12),

 - c2

2b  - 
ac3

3b3 +\scrO (c4)
min\{ \| x\| 2B , \| x+ \alpha \ast p\| 2B\} 

\leq \rho (x+ \alpha \ast p) - \rho (x) \leq 
 - c2

2b  - 
ac3

3b3 +\scrO (c4)
max\{ \| x\| 2B , \| x+ \alpha \ast p\| 2B\} 

,

and hence \rho (x+ \alpha \ast p) - \rho (x) =  - \scrO (sin2 \theta )\scrO 
\bigl( 
cos2 \angle (p,\nabla \rho (x))

\bigr) 
.

Lemma 5. Let j \geq 0 be fixed and k > j be a variable integer. Consider two
iterates xj = v1 cos \theta j + fj sin \theta j \in Uj, xk = v1 cos \theta k + fk sin \theta k \in Uk computed by
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Algorithm 2, where fj , fk \bot Bv1, \| fj\| B = \| fk\| B = 1, \| xj\| B = \| xk\| B = 1, with
sufficiently small \theta j , \theta k such that \rho (xk) \leq \rho (xj) < \lambda 2. Consider a decomposition

xk = \beta jkxj + \gamma jkgjk(4.13)

with \beta jk, \gamma jk > 0, \| gjk\| B = 1, gjk \in span\{ pj - 1, gj , . . . , gk - 1\} (j > 0), or g0k \in Wk =
span\{ g0, . . . , gk - 1\} (j = 0). Under Assumption 4.4, let \mu jk = gTjkBxj, and we have

\gamma jk = \scrO (sin \theta j), \beta jk = 1 - \mu jk\gamma jk  - 
1

2
(1 - \mu 2

jk)\gamma 
2
jk +\scrO (\gamma 4

jk) = 1 - \scrO (sin \theta j).(4.14)

4.3.4. Main theorems. We are ready to prove the global quasi optimality of
Algorithm 2. To this end, we will show the following results step by step:

1. If the search directions \{ p0, . . . , pk\} of Algorithm 2 are approximately conju-
gate, then xk+1 \in Uk+1 is sufficiently close to the global minimizer in Uk+1

as long as xk \in Uk is sufficiently close to the global minimizer in Uk.
2. Any two consecutive search directions pk - 1 and pk are approximately conju-

gate, and so are p0 and p2 (hence, x3 is globally quasi-optimal).
3. If xk is globally quasi-optimal, then rk is nearly orthogonal to Wk; in fact,

lim\theta 0\rightarrow 0 cos\angle (rk,Wk) = 0 (we can hence define cos\angle (rk,Wk)
\bigm| \bigm| 
\theta 0=0

= 0).

4. Assume that cos\angle (rk,Wk) is differentiable at \theta 0 = 0. If xk \in Uk is glob-
ally quasi-optimal, then pk is approximately conjugate to \{ p0, . . . , pk - 1\} , and
hence xk+1 \in Uk+1 is also globally quasi-optimal, as a result of induction.

First, we show that a set of approximately conjugate search directions guarantee
that the quality of the iterate of Algorithm 2 at (outer) step k for approximating the
corresponding global minimizer can be extended to step k + 1 with a possible very
small deterioration on the order of \scrO (sin \theta k+1)\scrO (sin2 \theta 0).

Theorem 6. Let \{ xk\} be the iterates of Algorithm 2, rk = (A  - \rho (xk)B)xk the
residual, and \{ pk\} the B-normalized search directions. For a given k \geq 0, consider
all vectors of the form z = y + \alpha pk \in Uk+1, where y = \beta yx0 + \gamma ygy \in Uk with
\| y\| B = \| gy\| B = 1, and gy \in Wk, satisfying \rho (z) \leq \rho (y) \leq \rho (x0). Assume that \{ pk\} 
are pairwise approximately conjugate, i.e., pTk (A - \rho (xk)B)pj = \scrO (sin \theta j) (0 \leq j < k).
Let y\ast and z\ast be the global minimizer of \rho (\cdot ) in Uk and Uk+1, respectively. Then

\rho (xk+1) - \rho (z\ast ) \leq \rho (xk) - \rho (y\ast ) +\scrO (sin \theta k+1)\scrO (sin2 \theta 0).

To prove the global quasi optimality of Algorithm 2, it is hence crucial to show
that the B-normalized search directions are pairwise approximately conjugate, i.e.,

pTk (A - \rho (xk)B)pj = \scrO (sin \theta j)

for all integers 0 \leq j < k. To achieve this, our second step is to show that any two
consecutive search directions pk - 1 and pk are approximately conjugate, and so are p0
and p2. We will establish the complete near conjugacy in Theorem 10.

Lemma 7. The B-normalized search directions of Algorithm 2 satisfy

pTk (A - \rho (xk)B)pk - 1 = \scrO (sin2 \theta k - 1) for all k \geq 1.

To show the complete near conjugacy pTk (A  - \rho (xk)B)pj = \scrO (sin \theta j) for all 0 \leq 
j < k, we make an assumption about gk \in M\scrK m ((A - \rho kB)M, rk) as follows.
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Assumption 4.5. Let gk = Mp
(k)
m - 1((A - \rho kB)M) rk at step 6 of Algorithm 2,

where p
(k)
m - 1 is a polynomial of degree no greater than m - 1 with real coefficients.

With a sufficiently small \theta 0 = \angle (x0, v1)B , assume that for all 0 \leq j < k,

Mp
(k)
m - 1 ((A - \rho kB)M) = Mp

(j)
m - 1 ((A - \rho jB)M) +\scrO (sin \theta j).

Remark. Assumption 4.5 holds trivially for LOPCG, i.e., Algorithm 2 withm = 1,

because p
(k)
m - 1(\cdot ) = I for all k, so that gk = Mrk up to a scaling factor.

Lemma 8. Under Assumptions 4.3 and 4.5, pT2 (A - \rho (x2)B)p0 = \scrO (sin \theta 0).

From Lemmas 7 and 8, the search directions \{ p0, p1, p2\} are pairwise approxi-
mately conjugate. In addition, since x2 \in span\{ x1, g1, p0\} = span\{ x0, p0, p1\} = U2

is obtained from the RR projection, it is the global minimizer in U2. Let z\ast be the
global minimizer of \rho (\cdot ) in U3. It follows from Theorem 6 that

\rho (x3) - \rho (z\ast ) \leq \rho (x2) - \rho (y\ast ) +\scrO (sin \theta 3)\scrO (sin2 \theta 0) = \scrO (sin \theta 3)\scrO (sin2 \theta 0),(4.15)

where x2 = y\ast is the global minimizer in U2. We thus have the base case: x3 is a
global quasi minimizer in U3.

The rest of our work is focused on the inductive step: assuming that the global
quasi optimality is achieved at xk, we want to show that the new pk is approximately
conjugate to \{ p0, . . . , pk - 1\} such that the quasi optimality can be extended to xk+1.

Lemma 9. For a given k \geq 3, assume that the iterate xk of Algorithm 2 achieves
the global quasi optimality (Definition 4.2). Then rk = (A - \rho (xk)B)xk satisfies

lim
\theta 0\rightarrow 0

cos\angle (rk,Wk) = 0,(4.16)

i.e., rk is asymptotically orthogonal to Wk = span\{ p0, . . . , pk - 1\} .

Note that cos\angle (rk,Wk)| \theta 0=0 is not defined, since Algorithm 2 with x0 = v1 would
not proceed. However, thanks to (4.16), it is reasonable for us to make the following
assumption about the behavior cos\angle (rk,Wk) near \theta 0 = 0.

Assumption 4.6. For a given step k \geq 3, suppose that the iterate xk of Algorithm
2 achieves global quasi optimality (4.7). We define cos\angle (rk,Wk)

\bigm| \bigm| 
\theta 0=0

= 0 and assume

that cos\angle (rk,Wk) is differentiable at \theta 0 = 0; that is, we assume that cos\angle (rk,Wk) \leq 
\scrO (sin \theta 0) = \scrO (sin \theta \ell ) (1 \leq \ell \leq k) for a sufficiently small \theta 0.

We note that Assumption 4.6 is not just presented for technical convenience but
is consistent with our numerical experience, at least for relatively small k. Under such
an assumption, we can establish the inductive step as follows.

Theorem 10. Assume that the B-normalized \{ p0, . . . , pk - 1\} of Algorithm 2 are
approximately conjugate, and hence xk achieves global quasi optimality (4.7). Under
Assumptions 4.3, 4.4, and 4.5, \{ p0, . . . , pk\} are approximately conjugate.

Proof. To complete the proof, it is sufficient to show that pk is approximately
conjugate to p\ell for all 0 \leq \ell \leq k  - 2. For any \ell , 0 \leq \ell \leq k  - 2, note that x\ell +1 =
\beta \ell (\ell +1)x\ell + \gamma \ell (\ell +1)p\ell , where \gamma \ell (\ell +1) = \scrO (sin \theta \ell ) and \beta \ell (\ell +1) = 1 - \scrO (sin \theta \ell ). It follows
that p\ell =

1
\gamma \ell (\ell +1)

\bigl( 
x\ell +1  - \beta \ell (\ell +1)x\ell 

\bigr) 
, and
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\bigm| \bigm| pT\ell (A - \rho (xk)B)gk
\bigm| \bigm| = 1

| \gamma \ell (\ell +1)| 

\bigm| \bigm| \bigm| \bigl( xT
\ell +1  - \beta \ell (\ell +1)x

T
\ell 

\bigr) 
(A - \rho (xk)B)gk

\bigm| \bigm| \bigm| 
=

1

| \gamma \ell (\ell +1)| 

\bigm| \bigm| \bigm| \bigl[ xT
\ell +1(A - \rho (x\ell +1)B) - \beta \ell (\ell +1)x

T
\ell (A - \rho (x\ell )B)

\bigr] 
gk

+ (\rho (x\ell +1) - \rho (xk))x
T
\ell +1Bgk  - \beta \ell (\ell +1) (\rho (x\ell ) - \rho (xk))x

T
\ell Bgk

\bigm| \bigm| \bigm| ,
vb =

\bigm| \bigm| (rT\ell +1  - \beta \ell (\ell +1)r
T
\ell )gk +\scrO (sin2 \theta \ell +1)\| Bx\ell +1\| \| gk\| +\scrO (sin2 \theta \ell )\| Bx\ell \| \| gk\| 

\bigm| \bigm| 
| \gamma \ell (\ell +1)| 

\leq \scrO (sin2 \theta \ell )\| gk\| 
\scrO (sin \theta \ell )

+

\bigm| \bigm| (rT\ell +1  - \beta \ell (\ell +1)r
T
\ell )Mp

(k)
m - 1 ((A - \rho kB)M) rk

\bigm| \bigm| 
| \gamma \ell (\ell +1)| 

= \scrO (sin \theta \ell )\| gk\| +
1

| \gamma \ell (\ell +1)| 

\bigm| \bigm| \bigm| rT\ell +1

\Bigl[ 
p
(\ell +1)
m - 1 (M(A - \rho \ell +1B))M +\scrO (sin \theta \ell +1)

\Bigr] 
rk

 - \beta \ell (\ell +1)r
T
\ell 

\Bigl[ 
p
(\ell )
m - 1(M(A - \rho \ell B))M +\scrO (sin \theta \ell )

\Bigr] 
rk

\bigm| \bigm| \bigm| .
Since p

(\ell )
m - 1 (M(A - \rho \ell B))M is symmetric, r\ell p

(\ell )
m - 1 (M(A - \rho \ell B))M = gT\ell , and this

holds similarly if \ell is replaced with \ell +1. Also, since xk achieves global quasi optimality,
by Assumption 4.6, | cos\angle (rk,Wk)| \leq \scrO (sin \theta \ell ) (0 \leq \ell \leq k). Since g\ell , g\ell +1 \in Wk,
we have | cos\angle (rk, g\ell )| \leq \scrO (sin \theta \ell ) and | cos\angle (rk, g\ell +1)| \leq \scrO (sin \theta \ell +1). Note that
\| r\ell \| = \scrO (sin \theta \ell ), and \| rk\| = \scrO (sin \theta k) = \scrO (sin \theta \ell +1) = \scrO (sin \theta \ell ). Hence,\bigm| \bigm| p\ell (A - \rho (xk)B)gk

\bigm| \bigm| (4.17)

\leq \| gk\| \scrO (sin \theta \ell ) +

\bigm| \bigm| \bigm| gT\ell +1rk + rT\ell +1rk\scrO (sin \theta \ell +1) - \beta \ell (\ell +1)g
T
\ell rk + rT\ell rk\scrO (sin \theta \ell )

\bigm| \bigm| \bigm| 
\scrO (sin \theta \ell )

\leq \| gk\| \scrO (sin \theta \ell ) +
\| g\ell +1\| \| rk\| | cos\angle (rk, g\ell +1)| + | \beta \ell (\ell +1)| \| g\ell \| \| rk\| | cos\angle (rk, g\ell )| 

\scrO (sin \theta \ell )

+ \| r\ell +1\| \| rk\| \scrO (1) + \| r\ell \| \| rk\| \scrO (1)

\leq \| gk\| \scrO (sin \theta \ell ) +
\| rk\| 

\bigl( 
\| g\ell +1\| \scrO (sin \theta \ell +1) + | \beta \ell (\ell +1)| \| g\ell \| \scrO (sin \theta \ell )

\bigr) 
\scrO (sin \theta \ell )

+\scrO (sin2 \theta \ell )

\leq \| gk\| \scrO (sin \theta \ell ) + \| g\ell +1\| \scrO (sin \theta k) + \| g\ell \| \scrO (sin \theta k) +\scrO (sin2 \theta \ell ) = \scrO (sin \theta \ell ).

Moreover, it is not difficult to see that
\bigm| \bigm| p\ell (A  - \rho (xk)B)gk

\bigm| \bigm| = \| gk\| \scrO (sin \theta \ell ). Recall
that \widetilde pk = gk  - 

pT
k - 1(A - \rho (xk - 1)B)gk

pT
k - 1(A - \rho (xk - 1)B)pk - 1

pk - 1 such that \| \widetilde pk\| is proportional to \| gk\| . The
normalized search direction is pk = \eta k

\| gk\| \widetilde pk, where \eta k is chosen such that \| pk\| B = 1.

Also, since 0 \leq \ell \leq k  - 2, pT\ell (A - \rho (xk - 1)B)pk - 1 = \scrO (sin \theta \ell ), and

pT\ell (A - \rho (xk)B)pk =
\eta k

\| gk\| 
pT\ell (A - \rho (xk)B)\widetilde pk(4.18)

=
\eta k

\| gk\| 
pT\ell (A - \rho (xk)B)

\biggl( 
gk  - 

pTk - 1(A - \rho (xk - 1)B)gk

pTk - 1(A - \rho (xk - 1)B)pk - 1
pk - 1

\biggr) 
=

\eta k
\| gk\| 

\Bigl\{ 
pT\ell (A - \rho (xk)B)gk  - 

pTk - 1(A - \rho (xk - 1)B)gk

pTk - 1(A - \rho (xk - 1)B)pk - 1

\times 
\bigl[ 
pT\ell (A - \rho (xk - 1)B)pk - 1 + (\rho (xk - 1) - \rho (xk)) p

T
\ell Bpk - 1

\bigr] \Bigr\} 
=

\eta k
\| gk\| 

\Bigl\{ 
\| gk\| \scrO (sin \theta \ell ) +\scrO (\| gk\| )[\scrO (sin \theta \ell ) +\scrO (sin2 \theta k - 1)]

\Bigr\} 
= \scrO (sin \theta \ell ).

Finally, recall from Lemma 7 that pk - 1 and pk are approximately conjugate. It
follows that \{ p0, . . . , pk\} are pairwise approximately conjugate.
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With all the above work, we can finally present the major theorem of this section
on the global quasi optimality of all iterates generated by Algorithm 2.

Theorem 11. Let \{ xk\} be the iterates of Algorithm 2, rk = (A - \rho (xk)B)xk the
residual, and \{ pk\} the B-normalized search directions. Suppose that Assumptions 4.3,
4.4, and 4.5 hold. In Theorem 6, let y\ast and z\ast be the global minimizer in Uk and Uk+1,
respectively, and Ck+1 be the constant for which \rho (xk+1)  - \rho (z\ast ) \leq \rho (xk)  - \rho (y\ast ) +
Ck+1 sin \theta k+1 sin

2 \theta 0 if \{ p0, . . . , pk\} are approximately conjugate. Then for any given

k \geq 3, \rho (xk) - \rho (y\ast ) \leq 
\sum k

j=3 Cj sin \theta j sin
2 \theta 0, and therefore,

lim
\theta 0\rightarrow 0

\rho (xk) - \rho (y\ast )

\rho (xk) - \lambda 1
\leq lim

\theta 0\rightarrow 0

\sum k
j=3 Cj sin \theta j sin

2 \theta 0

\xi k (\rho (f0) - \lambda 1) sin
2 \theta 0

\leq lim
\theta 0\rightarrow 0

\bigl( 
\xi  - 1

\bigr) k \sum k
j=3 Cj sin \theta j

\lambda 2 - \lambda 1
= 0.(4.19)

Proof. The proof is based on mathematical induction. The base case has been
established in Lemmas 7 and 8 together with (4.15). The inductive step is completed
in Theorem 10. Then, by Theorem 6, the conclusion holds.

Remark. Interestingly, (4.19) suggests that for a larger k, the relative difference
between \rho (xk) (locally optimized \rho (\cdot ) over span\{ xk - 1, gk - 1, pk - 2\} ) and \rho (y\ast ) (globally
optimized \rho (\cdot ) over Uk = span\{ x0\} + span\{ g0, . . . , gk - 1\} ) tends to grow larger. The
upper bound on this relative difference scales like a linear function of k (assuming that
| Cj sin \theta j | \leq C for all j \geq 3) multiplied by an exponentially increasing function of k.
Nevertheless, for a given outer iteration k \geq 3, Theorem 11 shows that Algorithm 2
iterate xk \in Uk is almost as good as the corresponding global minimizer y\ast if \theta 0 is
sufficiently small. As a result, Algorithm 2 would actually converge considerably faster
than Theorem 1 suggests. This theorem also provides insight into the performance of
LOPCG, which is an instance of Algorithm 2, and the block extension LOBPCG.

Remark. A different viewpoint is followed in [36] but with qualitatively similar
results. Consider k steps of CG solving the JD correction equation starting from
the Ritz vector at the ith iteration of Lanczos. Then, the distance between the Ritz
vector of Lanczos at iteration i+ k and the CG solution after k steps is bounded by
O(| \rho i - \rho i+k| ). The locally optimal restarting approximates the A-norm minimization
of CG over the entire space, so if Lanczos converges slowly or if k is small, +K
restarting will yield Ritz vectors close to the unrestarted Lanczos. If \rho i and \rho i+k are
far, then convergence is already fast and the use of +K is not needed.

5. Experiments. First we show that TRPL+K does indeed achieve quasi opti-
mality and then we investigate the effect of the maximum basis size q and the number
of previous retained vectors l on the performance. Then we present an extensive set
of experiments comparing TRPL+K against other methods on a variety of problems.

The matrix set is chosen to overlap with other papers in the literature. All matri-
ces can be reproduced from these papers or downloaded from the SuiteSparse Matrix
collection (formerly at the University of Florida). Table 5.1 lists some basic prop-
erties of these matrices. Matrices finan512 and Plate33K A0 have larger gap ratios
so they are relatively easy problems. Matrices Trefethen 20k and cfd1 are moder-
ately hard problems, while matrices 1138bus and or56f are the hardest problems. The
effectiveness of a method is typically manifested on harder problems.

We compare TRPL+K against the following eigenmethods: unrestarted GD (as
a representative of unrestarted Lanczos), TRLan [43], GD+K [34, 36], LOBPCG [17],
and EigIFP [11]. To allow for easier comparisons, we use only MATLAB implemen-
tations. We adopt the publicly available implementations for LOBPCG and EigIFP
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Table 5.1
Properties of the test matrices for standard eigenvalue problems. Trefethen 20k is Tre20k, and

Plate33K A0 is PlaA0.

Matrix Order nnz(A) \kappa (A) Source
1138bus 1138 4054 1.2E7 MM
or56f 9000 2890150 6.6E7 Yang
Tre20k 20000 554466 2.9E5 UF
PlaA0 39366 914116 6.8E9 FEAP
cfd1 70656 1825580 1.3E6 UF

finan512 74752 596992 9.8E1 UF

while we provide implementations for TRPL+K, TRLan, and GD+K. All methods
employ the same stopping criterion satisfying

\| Aui  - \theta iui\| \leq \| A\| F \delta user,(5.1)

where \| A\| F is the Frobenius norm of A and \delta user is a user-specified stopping tol-
erance. All experiments use \delta = 1E  - 14. All methods start with the same initial
guess, rand(n, k), with fixed seed number (12). We set the maximum number of
restarts to 5000 for all methods. Since we focus on methods with limited mem-
ory, we set maxBasisSize=18, minRestartSize=8 for TRPL+K, TRLan, and GD+K.
Since EigIFP restarts with a single vector, we set maxBasisSize=18 for its inner itera-
tion. For LOBPCG, the method always uses maxBasisSize=3p. For other parameters
we follow the defaults suggested in each code. We seek p = 1, 5, and 10 algebraically
smallest eigenpairs for both stardard and generalized eigenvalue problems. We em-
ploy soft locking since the desired number of eigenpairs is small. All computations
are carried out on an Apple MacBook Pro with Intel Core i7 processors at 2.2 GHz
for a total of 4 cores and 16 GB of memory running the Mac Unix operating system.
We use MATLAB 2016a with machine precision \epsilon = 2.2E - 16. We compare both the
number of matrix-vector products (reported as ``MV"" in the tables) and runtime in
seconds (reported as ``Sec"").

5.1. Quasi optimality with +K. Quasi optimality as defined in (4.7) implies
that as the initial guess becomes better, the relative difference between the vector iter-
ates of TRPL+K and the unrestarted method tends to zero. Figure 5.1 demonstrates
that TRPL+K achieves this quasi optimality on two sample matrices. A standard
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Fig. 5.1. Confirming the quasi optimality of TRPL+1 with no inner iterations by showing that
the ratio (4.7) converges to zero as the angle of the initial guess to the required eigenvector decreases.
We plot this for the first 100 iterations.
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eigenproblem is solved without preconditioning. TRPL+K uses only one inner itera-
tion (i.e., equivalent to LOPCG) because it is easier to compare step by step to the
unrestarted method. The remark after Theorem 11 suggests that the ratio in (4.7)
increases with the number of iterations, which we observe in the plots. Therefore,
we plot only the first 100 iterations. What is important, however, is that for any
given iteration, the ratio decreases as we make the initial guess better. Therefore, as
TRPL+K converges asymptotically, it increasingly matches the unrestarted method.

5.2. The effects of maxBasisSize \bfitq and maxPrevSize \bfitl . First we investi-
gate the effects of varying q from 8 to 512 on the performance of TRPL+K (without
a preconditioner) and TRLan compared against unrestarted Lanczos, with l = 1
and p = 1. We choose three hard problems where the differences are pronounced.
Figure 5.2 shows that as the maximum basis size increases, both TRPL+K and TRLan
become similar to the unrestarted Lanczos. However, while TRLan requires the in-
creased basis to significantly improve convergence, TRPL+K achieves very good or
even close to optimal convergence with very small basis size. The slight increase
of matvecs in TRPL+K with very large basis sizes may be attributed to the more
targeted expansion of the subspace using the residual instead of the Lanczos vectors.

We then vary the number of previous vectors l from 0 to 5 to study its impact
on the convergence of TRPL+K (without a preconditioner), seeking p = 5 smallest
eigenvalues. When l = 0 and without preconditioning, TRPL+K reduces to TRLan.
Figure 5.3 shows the similar trend for all three cases: a significant reduction in matvecs
with l = 1, while l > 1 results in a slight deterioration in convergence. This is
qualitatively similar to earlier observations for GD+K, where l > 1 is beneficial only
with a block method. This implies that we obtain all the benefits of the +K technique
with minimal overhead.
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Fig. 5.2. The effect of varying the maximum basis size q on the convergence of TRPL+K and
TRLan. Seeking p = 1 smallest eigenvalue without preconditioning.
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Fig. 5.3. The effect of varying the number of previous vectors l on the convergence of TRPL+K
when seeking p = 5 smallest eigenvalues without preconditioning.
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5.3. Without preconditioning. We compare against unrestarted Lanczos and
other methods without a preconditioner to show the near-optimal performance of
TRPL+K under limited memory. Figure 5.4 shows the results on the easy case
finan512 and on the hard case cfd1, seeking p = 1 eigenvalue. For both cases TRPL+K
and GD+K can achieve almost identical performance as unrestarted Lanczos, which
is consistent with Theorem 11. GD+K requires slightly fewer iterations because its
new directions come from the most recent RR over the entire space, although the cost
per iteration is higher. Compared to LOBPCG and EigIFP, TRPL+K is significantly
faster because it uses thick restarting and a Krylov subspace (compared to LOBPCG)
and because it uses thick and locally optimal restarting (compared to EigIFP). The
difference between TRPL+K and TRLan is relatively small for the easy case but
becomes significant with hard problems. Figure 5.5 shows similar results when com-
puting 5 eigenvalues. To make it easier to see, we only show graphs for TRPL+K,
GD+K, and TRLan. As before, TRPL+K and GD+K are competitive and both of
them substantially outperform the performance of TRLan.

Tables 5.2 and 5.3 summarize results from all methods seeking 1 and 5 eigenvalues,
respectively. TRPL+K converges faster than all other methods in terms of matrix-
vector products except for GD+K. In fact, the harder the problem the more significant
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Fig. 5.4. Compare all methods to the optimal convergence of unrestarted Lanczos when seeking
1 smallest eigenvalue without preconditioning.
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Fig. 5.5. Compare TRPL+K and GD+K to the optimal convergence of unrestarted Lanczos
when seeking 5 smallest eigenvalue without preconditioning.
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Table 5.2
Comparing all methods for 1 smallest eigenvalue without preconditioning.

Method: TRPL+K TRLan GD+K LOBPCG EIGIFP

Matrix MV Sec MV Sec MV Sec MV Sec MV Sec
1138BUS 4778 0.9 48718 8.4 3662 1.8 15498 6.4 11107 1.2
or56f 4908 20.2 64058 257.5 4024 21.5 20365 82.1 19117 72.3
Tre20k 2208 7.1 12718 36.4 2058 10.3 3482 8.6 3799 8.0
PlaA0 638 3.5 1168 5.5 556 6.4 1583 5.4 1207 3.9
cfd1 2358 21.7 13008 106.7 1970 44.9 5647 33.7 4807 29.5
finan512 358 6.0 428 7.3 322 6.7 1028 4.8 685 3.3

Table 5.3
Comparing all methods for 5 smallest eigenvalue without preconditioning.

Method: TRPL+K TRLan GD+K LOBPCG EIGIFP

Matrix MV Sec MV Sec MV Sec MV Sec MV Sec
1138BUS 26888 5.1 414518 74.9 21318 11.2 374915 56.1 68729 7.9
or56f 13218 55.4 115098 507.7 11169 61.2 40940 65.5 68801 260.6
Tre20k 6158 18.1 23358 65.8 5520 35.4 14335 21.8 25277 55.0
PlaA0 1858 10.0 2728 12.7 1812 23.3 12545 22.1 4235 14.3
cfd1 8558 85.8 43648 386.6 7747 212.5 70170 458.6 20993 132.3
finan512 1668 27.2 2838 44.3 1501 43.5 8830 35.2 3551 18.2

the gains. It is also interesting to observe the differences between the methods which
are due mainly to the use of different algorithmic components. Among them, the
locally optimal restarting has the biggest effect, followed by a larger Krylov space,
while a combination of all three components in TRPL+K (and GD+K) are clearly
the most beneficial while being computationally economical. Also, TRPL+K requires
about 20\% more matrix-vector products than GD+K but it is 35\% faster in runtime,
making it the method of choice when the matrix-vector operator is inexpensive. This is
because TRPL+K only needs to perform the RR procedure once every outer iteration
while GD+K needs to apply the RR procedure for every matrix-vector multiplication.

5.4. With preconditioning. The above results emphasize the need for pre-
conditioning, especially for problems with highly clustered eigenvalues. In this case
TRLan cannot be used. In our experiments, we use the MATLAB ILU factorization
on A with parameters `type = nofill'. We then compare TRPL+k against other
methods with the constructed preconditioner for finding 1 and 5 smallest eigenvalues.
The results are shown in Tables 5.4 and 5.5, respectively. TRPL+K is again the
fastest or close to the fastest method. We note that with a good preconditioner the
number of iterations decreases and thus the differences between methods are smaller.
We also note that the added cost of the preconditioner per iteration is similar to
having a more expensive operator which favors GD+K also in runtime.

Table 5.4
Comparing all methods for 1 smallest eigenvalue with preconditioning.

Method: TRPL+K GD+K LOBPCG EIGIFP

Matrix MV Sec MV Sec MV Sec MV Sec
1138BUS 328 0.2 174 0.2 474 0.3 397 0.2
or56f 158 1.5 81 0.8 335 2.7 325 2.7
Tre20k 38 0.2 17 0.1 10 0.1 55 0.3
cfd1 838 20.0 562 14.0 2519 26.5 1279 17.2
finan512 98 1.9 69 1.5 144 1.0 127 1.4
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Table 5.5
Comparing all methods for 5 smallest eigenvalues with preconditioning.

Method: TRPL+K GD+K LOBPCG EIGIFP

Matrix MV Sec MV Sec MV Sec MV Sec
1138BUS 1128 0.3 779 0.5 2120 0.5 2795 0.7
or56f 368 3.3 223 2.4 375 2.3 1175 10.1
Tre20k 118 0.7 45 0.4 115 0.3 203 1.0
cfd1 2598 67.1 1868 56.7 12900 89.7 5135 72.8
finan512 378 8.6 289 9.0 1225 5.2 779 8.5

Table 5.6
Properties of the test matrices for generalized eigenvalue problems.

Matrix Order nnz(A) \kappa (A) Source
bcsstk23 3134 45178 6.9e+12 MM
bcsstm23 3134 3134 9.4e+08 MM
bcsstk24 3562 159910 6.3e+11 MM
bcsstm24 3562 3562 1.8e+13 MM
bcsstk25 15439 252241 1.2e+13 MM
bcsstm25 15439 15439 6.0e+09 MM

Table 5.7
Comparing all methods for computing 1, 5, and 10 smallest eigenvalues with preconditioning

(numbers in parenthesis). Each pencil bcsstkmXY has matrix pairs (bcsstkXY, bcsstmXY), where
XY \in \{ 23, 24, 25\} .

Method: TRPL+K LOBPCG EIGIFP

Matrix MV Sec MV Sec MV Sec
bcsstkm23(1) 60 0.1 134 0.2 127 0.2
bcsstkm24(1) 29 0.1 55 0.1 73 0.2
bcsstkm25(1) 2816 29.1 28355 178.9 9721 66.2
bcsstkm23(5) 150 0.4 190 0.3 419 0.7
bcsstkm24(5) 120 0.6 1020 3.6 257 0.8
bcsstkm25(5) 3830 39.6 39895 89.1 14423 97.6
bcsstkm23(10) 210 0.4 240 0.2 820 1.0
bcsstkm24(10) 210 0.9 270 0.6 496 1.4
bcsstkm25(10) 5120 52.9 45820 63.7 20494 141.7

5.5. Generalized eigenvalue problem. We perform some sample experiments
on generalized eigenvalue problems, comparing the proposed method against LOBPCG
and EigIFP. As shown in Table 5.6, the condition numbers of these problems are quite
large, making preconditioning necessary to accelerate the convergence. In this exper-
iment, we use incomplete LDL factorization [12] on A with droptol = 1e-6, 1e-8

for bcsstkm23 and bcsstkm24, respectively, and the MATLAB LDL factorization on
A with parameter THRESH = 0.5 for bcsstkm25. We then use the preconditioner to
find 1, 5, and 10 smallest eigenvalues. As shown in Table 5.7, TRPL+K significantly
outperforms other methods in terms of the number of matrix-vector operations for
these cases. Note that LOGPCG is quite efficient in terms of runtime, thanks to its
efficiently implemented block operations in MATLAB, especially for small matrices
that fit in cache. A block TRPL+K is also possible, which is left for future work.

6. Conclusions and future work. We presented a new near-optimal eigen-
method, thick-restart preconditioned Lanczos +K method (TRPL+K), which is based
on three key algorithmic components: thick restarting, locally optimal restarting, and
the ability to build a preconditioned Krylov space. We provided a proof of an asymp-
totic global quasi optimality of the proposed method and provided insights on the
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near-optimal performance of a group of methods that employ locally optimal restart-
ing. Our extensive experiments demonstrate that TRPL+K either outperforms or
matches other state-of-the-art methods in terms of both number of matrix-vector
operations and computational time.

An interesting future direction is to extend this approach to the Lanczos bidiag-
onalization method for singular value problems.

Appendix A.

Proof of Lemma 3. By definition, the optimal step size \alpha \ast is

\alpha \ast = argmin
\alpha >0

\rho (x+ \alpha p) = argmin
\alpha >0

(x+ \alpha p)TA(x+ \alpha p)

(x+ \alpha p)TB(x+ \alpha p)
,(A.1)

which can be found by letting d
d\alpha 

1
2\rho (x + \alpha p) = 0. Using the quotient rule for differ-

entiation, with some algebraic work, we have

d

d\alpha 

\rho (x+ \alpha p)

2
=

a(x, p)\alpha 2 + b(x, p)\alpha + c(x, p)

[(x+ \alpha p)TB(x+ \alpha p)]2
,(A.2)

where a(x, p), b(x, p), and c(x, p) are given in (4.12). For the sake of simplicity, we refer
to these coefficients as a, b, and c, respectively, when there is no danger of confusion.
Depending on the sign of a, there are three cases for the solutions of d

d\alpha \rho (x+\alpha p) = 0:
1. a = 0. Obviously, there is a unique solution \alpha \ast =  - c

b > 0.

2. a > 0. Since c < 0, there is a unique positive root \alpha \ast = 1
2a

\bigl( 
 - b+

\surd 
b2  - 4ac

\bigr) 
.

By assumption, b \geq \| x\| 2B\| p\| 2B\delta > 0, and | c| \leq \| x\| 2B\| p\| \| Ax  - \rho (x)Bx\| =
\scrO (sin \theta ) for sufficiently small \theta . By the Taylor expansion of

\surd 
1 - t for | t| < 1,

\alpha \ast =
1

2a

\Biggl( 
 - b+ b

\sqrt{} 
1 - 4ac

b2

\Biggr) 
=  - c

b

\biggl( 
1 +

ac

b2
+

2a2c2

b4
+ \cdot \cdot \cdot 

\biggr) 
,

which is slightly smaller than \alpha \ast in case 1 because a > 0 and c < 0.
3. a < 0. In this case, there must be two distinct solutions 0 < \alpha \ast 

1 < \alpha \ast 
2 such

that d
d\alpha \rho (x + \alpha p) < 0 for 0 \leq \alpha < \alpha \ast 

1 or \alpha > \alpha \ast 
2, and

d
d\alpha \rho (x + \alpha p) > 0 for

\alpha \ast 
1 < \alpha < \alpha \ast 

2. In fact, if there is no solution or only one repeated solution, then
d
d\alpha \rho (x+ \alpha p) \leq 0 for all \alpha \geq 0, and hence \rho (p) = lim\alpha \rightarrow +\infty \rho (x+ \alpha p) \leq \rho (x),
contradicting our assumption that \rho (p) - \rho (x) \geq \delta > 0. Given these intervals
of monotonicity, \rho (x+ \alpha \ast 

2p) > lim\alpha \rightarrow +\infty \rho (x+ \alpha p) = \rho (p) \geq \rho (x) + \delta . Hence
the minimizer of \rho (x + \alpha p) is achieved at \alpha \ast 

1 with the same expression as in
case 2. The optimal step size is slightly greater than \alpha \ast =  - c/b in case 1 as
a, c < 0. We still refer to \alpha \ast 

1 as \alpha \ast for notation consistency.
In summary, \rho (x + \alpha p) decreases monotonically on (0, \alpha \ast ), then increases on

(\alpha \ast ,+\infty ) (cases 1 and 2) or on (\alpha \ast , \alpha \ast 
2) (case 3). The optimal \alpha \ast has a closed form.

Proof of Lemma 4. We note that the denominator of d
d\alpha \rho (x+ \alpha p), namely, (x+

\alpha p)TB(x + \alpha p) = \| p\| 2B\alpha 2 + 2pTBx\alpha + \| x\| 2B > 0 for all \alpha , and it is a quadratic
with positive quadratic term coefficient. Hence, max0\leq \alpha \leq \alpha \ast (x + \alpha p)TB(x + \alpha p) =
max\alpha =\{ 0,\alpha \ast \} (x + \alpha p)TB(x + \alpha p) = max\{ \| x\| 2B , \| x + \alpha \ast p\| 2B\} , where \alpha \ast =  - c

b or
 - c

b (1 + ac
b2 + . . .); see Lemma 3. For sufficiently small \theta = \angle (x, v1)B , since | c| \leq 

\scrO (sin \theta ), there is a small constant \eta \in (0, 1) independent of \theta , such that
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\rho (x+ \alpha \ast p) - \rho (x) =

\int \alpha \ast 

0

d

d\alpha 
\rho (x+ \alpha p)d\alpha =

\int \alpha \ast 

0

a\alpha 2 + b\alpha + c

(x+ \alpha p)TB(x+ \alpha p)
d\alpha 

\leq 1

max\{ \| x\| 2B , \| x+ \alpha \ast p\| 2B\} 

\int \alpha \ast 

0

(a\alpha 2 + b\alpha + c)d\alpha =
1
3a(\alpha 

\ast )3 + 1
2b(\alpha 

\ast )2 + c\alpha \ast 

max\{ \| x\| 2B , \| x+ \alpha \ast p\| 2B\} 

=
 - c2

2b  - 
ac3

3b3 +\scrO (c4)
max\{ \| x\| 2B , \| x+ \alpha \ast p\| 2B\} 

\leq  - c2(1 - \eta )

2bmax\{ \| x\| 2B , \| x+ \alpha \ast p\| 2B\} 
,

where b \geq \| x\| 2B\| p\| 2B\delta > 0 is bounded away from zero; see (4.12).
To establish the lower bound, note that our assumption that \rho (p) - \rho (x) \geq \delta > 0

for a constant \delta independent of \theta = \angle (x, v1)B means that there exists a \~\delta > 0
independent of \theta , such that \angle (p, x) \geq \~\delta . Therefore, \| x+\alpha \ast p\| B is bounded away from
zero. Similarly, for sufficiently small \theta , we also have

\rho (x+ \alpha \ast p) - \rho (x) \geq 1

min\{ \| x\| 2B , \| x+ \alpha \ast p\| 2B\} 

\int \alpha \ast 

0

(a\alpha 2 + b\alpha + c)d\alpha (A.3)

=
 - c2

2b  - 
ac3

3b3 +\scrO (c4)
min\{ \| x\| 2B , \| x+ \alpha \ast p\| 2B\} 

\geq  - c2(1 + \eta )

min\{ \| x\| 2B , \| x+ \alpha \ast p\| 2B\} 
,

where c = \| x\| 2BpT (Ax - \rho (x)Bx) = \scrO (sin \theta )\scrO 
\bigl( 
cos\angle (p,\nabla \rho (x))

\bigr) 
from (4.12).

Proof of Lemma 5. First, note that one can always choose \beta jk, \gamma jk > 0 in (4.13).
If a decomposition has negative \beta jk or \gamma jk, simply replace xj with  - xj or gjk with
 - gjk.

Given the decomposition (4.13), the normalization condition \| xk\| B = 1 leads to

\| xk\| 2B = (\beta jkxj + \gamma jkgjk)
TB(\beta jkxj + \gamma jkgjk)

= \| xj\| 2B\beta 2
jk + 2(gTjkBxj)\gamma jk\beta jk + \| gjk\| 2B\gamma 2

jk = \beta 2
jk + 2\mu jk\gamma jk\beta jk + \gamma 2

jk(A.4)

= (\gamma jk + \mu jk\beta jk)
2 + (1 - \mu 2

jk)\beta 
2
jk = 1,

where \mu jk = gTjkBxj = (xj , gjk)B \in [ - 1, 1] because \| xj\| B = \| gjk\| B = 1.
Let rj = Axj  - \rho (xj)Bxj be the eigenresidual associated with xj , and define

djk \equiv \rho (gjk) - \rho (xj). The Rayleigh quotient of xk is therefore

\rho (xk) =
xT
kAxk

xT
kBxk

= xT
kAxk = (\beta jkxj + \gamma jkgjk)

TA(\beta jkxj + \gamma jkgjk)(A.5)

= (xT
j Axj)\beta 

2
jk + 2(gTjkAxj)\gamma jk\beta jk + (gTjkAgjk)\gamma 

2
jk

= \rho (xj)\beta 
2
jk + 2[gTjk(rj + \rho (xj)Bxj)]\gamma jk\beta jk + \rho (gjk)\gamma 

2
jk (as Axj = rj + \rho (xj)Bxj)

= \rho (xj)\beta 
2
jk + 2\rho (xj)(g

T
jkBxj)\gamma jk\beta jk + 2(gTjkrj)\gamma jk\beta jk + (\rho (xj) + djk)\gamma 

2
jk

= \rho (xj)
\bigl( 
\beta 2
jk + 2\mu jk\gamma jk\beta jk + \gamma 2

jk

\bigr) 
+ 2(gTjkrj)\gamma jk\beta jk + djk\gamma 

2
jk

= \rho (xj) + 2(gTjkrj)\gamma jk\beta jk + djk\gamma 
2
jk (see (A.4))

or, equivalently,

2(gTjkrj)\gamma jk\beta jk + djk\gamma 
2
jk = \rho (xk) - \rho (xj) = (\rho (xk) - \lambda 1) - (\rho (xj) - \lambda 1) .

Using Assumption 4.3, it follows that

 - (1 - \xi k - j)(\rho (xj) - \lambda 1) \leq 2(gTjkrj)\gamma jk\beta jk + djk\gamma 
2
jk \leq  - (1 - \=\xi k - j)(\rho (xj) - \lambda 1).
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From (4.4), we divide the above inequality by sin2 \theta j and have

 - (1 - \xi k - j)(\rho (fj) - \lambda 1) \leq 2
gTjkrj

sin \theta j

\biggl( 
\gamma jk
sin \theta j

\biggr) 
\beta jk + djk

\biggl( 
\gamma jk
sin \theta j

\biggr) 2

(A.6)

\leq  - (1 - \=\xi k - j)(\rho (fj) - \lambda 1).

Note that the left-hand side and the right-hand side of the above inequality are both
on the order of \scrO (1), bounded away from zero and independent of \theta j . Also note that
| gT

jkrj | 
sin \theta j

\leq \| gjk\| \| rj\| 
sin \theta j

\leq (1 + \delta )\| gjk\| \| Afj  - \rho (xj)Bfj\| = \scrO (1) from (4.5). In addition,

since gjk \in span\{ pj - 1, gj , . . . , gk - 1\} \subset Wk, under Assumption 4.4, there is a d > 0
such that djk = \rho (gjk) - \rho (xj) \geq d > 0 for all 1 \leq j < k. Consequently, letting \theta j \rightarrow 0
in (A.6), we have \gamma jk = \scrO (sin \theta j).2

From (A.4), \beta jk can be written in terms of \gamma jk as

\beta jk =  - \mu jk\gamma jk +
\sqrt{} 
1 - \gamma 2

jk + \mu 2
jk\gamma 

2
jk = 1 - \mu jk\gamma jk  - 

1

2
(1 - \mu 2

jk)\gamma 
2
jk +\scrO (\gamma 4

jk),(A.7)

which completes the proof.

Proof of Theorem 6. Since y = \beta yx0 + \gamma ygy, gy \in Wk, \| y\| B = \| gy\| B = 1, and
\rho (y) \leq \rho (x0), from Lemma 5, we have \gamma y = \scrO (sin \theta 0) and | 1  - \beta y| = \scrO (sin \theta 0).
Similarly, the iterate xk = \beta 0kx0 + \gamma 0kg0k satisfies \gamma 0k = \scrO (sin \theta 0) and | 1  - \beta 0k| =
\scrO (sin \theta 0). Note that \| r0\| = \scrO (sin \theta 0), 0 \leq \rho (x0)  - \rho (y) \leq \rho (x0)  - \lambda 1 = \scrO (sin2 \theta 0),
and, similarly, 0 \leq \rho (x0) - \rho (xk) \leq \scrO (sin2 \theta 0). It follows that

(A - \rho (y)B)y  - (A - \rho (xk)B)xk(A.8)

= (A - \rho (x0)B)(\beta yx0 + \gamma ygy) - (A - \rho (x0)B)(\beta 0kx0 + \gamma 0kg0k)

+ (\rho (x0) - \rho (y))By  - (\rho (x0) - \rho (xk))Bxk

= (\beta y  - \beta 0k)(A - \rho (x0)B)x0 + (A - \rho (x0)B)(\gamma ygy  - \gamma 0kg0k) +\scrO (sin2 \theta 0)
= [(\beta y  - 1) + (1 - \beta 0k)] r0 + (A - \rho (xk)B)(\gamma ygy  - \gamma 0kg0k)

+ (\rho (xk) - \rho (x0))B(\gamma ygy  - \gamma 0kg0k) +\scrO (sin2 \theta 0)
= r0\scrO (sin \theta 0) + \gamma y(A - \rho (xk)B)gy  - \gamma 0k(A - \rho (xk)B)g0k +\scrO (sin3 \theta 0) +\scrO (sin2 \theta 0)
= \gamma y(A - \rho (xk)B)gy  - \gamma 0k(A - \rho (xk)B)g0k +\scrO (sin2 \theta 0).

By assumption, gy, g0k \in Wk = span\{ p0, . . . , pk - 1\} are approximately conjugate
to pk, such that pTk (A  - \rho (xk)B)gy = \scrO (sin \theta 0) and pTk (A  - \rho (xk)B)g0k = \scrO (sin \theta 0),
since sin \theta \ell = \scrO (sin \theta 0) for 1 \leq \ell \leq k  - 1, due to (4.9). It follows from (A.8) that

pTk [(A - \rho (y)B)y  - (A - \rho (xk)B)xk]

= \gamma yp
T
k (A - \rho (xk)B)gy  - \gamma 0kp

T
k (A - \rho (xk)B)g0k +\scrO (sin2 \theta 0)

= \gamma y\scrO (sin \theta 0) - \gamma 0k\scrO (sin \theta 0) +\scrO (sin2 \theta 0) = \scrO (sin \theta 20),

which is a crucial observation for the rest of the proof, or equivalently,

pTk (A - \rho (y)B)y = pTk (A - \rho (xk)B)xk +\scrO (sin2 \theta 0).(A.9)

In addition, note that xk  - y = (\beta 0k  - \beta y)x0 + (\gamma 0kg0k  - \gamma ygy) = x0\scrO (sin \theta 0) +
g0k\scrO (sin \theta 0) - gy\scrO (sin \theta 0) = \scrO (sin \theta 0), and hence By = Bxk +\scrO (sin \theta 0).

2We emphasize here that \gamma jk \not = o(sin \theta j) and hence \gamma jk can be safely replaced with \scrO (sin \theta j)
anywhere appropriate.
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Let R3(\rho (x), \alpha p) =
1
2\rho (x+\alpha p) - 

\bigl[ 
1
2\rho (x) + \alpha pT\nabla 1

2\rho (x) +
1
2\alpha 

2pT\nabla 2 1
2\rho (x)p

\bigr] 
be the

remainder of second order Taylor expansion of 1
2\rho (x+\alpha p) at x with \| x\| B = 1. Then,

1

2
\rho (z) =

1

2
\rho (y + \alpha pk) =

1

2
\rho (y) + \alpha p

T
k

1

2
\nabla \rho (y) +

1

2
\alpha 

2
p
T
k

1

2
\nabla 2

\rho (y)pk + R3(\rho (y), \alpha pk)

(A.10)

=
1

2
\rho (y) + \alpha p

T
k (A  - \rho (y)B)y +

1

2
\alpha 

2
p
T
k

\bigl[ 
(A  - \rho (y)B)  - 2(Ay  - \rho (y)By)(By)

T

 - 2By(Ay  - \rho (y)By)
T \bigr] 

pk + R3(\rho (y), \alpha pk)

=
1

2
\rho (y) + \alpha 

\Bigl[ 
p
T
k (A  - \rho (xk)B)xk + \scrO (sin

2
\theta 0)

\Bigr] 
+

1

2
\alpha 

2
\Bigl\{ 
p
T
k [(A  - \rho (xk)B) + (\rho (xk)  - \rho (y))B] pk

 - 2
\Bigl[ 
p
T
k (A  - \rho (xk)B)xk + \scrO (sin

2
\theta 0)

\Bigr] 
[x

T
k B + \scrO (sin \theta 0)]pk

 - 2p
T
k [Bxk + \scrO (sin \theta 0)]

\Bigl[ 
x
T
k (A  - \rho (xk)B)pk + \scrO (sin

2
\theta 0)

\Bigr] \Bigr\} 
+ R3(\rho (y), \alpha pk) (see (A.9))

=
1

2
\rho (y) + \alpha p

T
k

1

2
\nabla \rho (xk) + \alpha \scrO (sin

2
\theta 0) +

1

2
\alpha 

2
p
T
k

\Bigl\{ 
(A  - \rho (xk)B)  - 2rk(Bxk)

T  - 2(Bxk)r
T
k

\Bigr\} 
pk

+ \alpha 
2
\Bigl[ 
\scrO (sin

2
\theta 0) + \| rk\| \scrO (sin \theta 0)

\Bigr] 
+ R3(\rho (y), \alpha pk)

=
1

2
\rho (y) + \alpha p

T
k

1

2
\nabla \rho (xk) +

1

2
\alpha 

2
p
T
k

1

2
\nabla 2

\rho (xk)pk + \alpha \scrO (sin
2
\theta 0) + \alpha 

2\scrO (sin
2
\theta 0) + R3(\rho (y), \alpha pk)

=
1

2
\rho (xk) + \alpha p

T
k

1

2
\nabla \rho (xk) +

1

2
\alpha 

2
p
T
k

1

2
\nabla 2

\rho (xk)pk + R3(\rho (xk), \alpha pk)

+
1

2
(\rho (y)  - \rho (xk))  - R3(\rho (xk), \alpha pk) + \scrO (\alpha sin

2
\theta 0) + \scrO (\alpha 

2
sin

2
\theta 0) + R3(\rho (y), \alpha pk)

=
1

2
\rho (xk + \alpha pk) +

1

2
(\rho (y)  - \rho (xk)) + R3(\rho (y), \alpha pk)  - R3(\rho (xk), \alpha pk) + \scrO (\alpha sin

2
\theta 0) + \scrO (\alpha 

2
sin

2
\theta 0).

Let the global minimizer in Uk+1 be z\ast = y(z\ast ) + \alpha (z\ast )pk with y(z\ast ) \in Uk

and \| y(z\ast )\| B = 1. We note that y(z\ast ) is generally not the global minimizer in Uk.
Consider the decomposition y(z\ast ) = v1 cos \theta y(z\ast ) + fy(z\ast ) sin \theta y(z\ast ) with fy(z\ast ) \bot Bv1
and \| fy(z\ast )\| B = 1 such that \rho (y(z\ast )) - \lambda 1 = \scrO (sin2 \theta y(z\ast )). Here, \alpha (z\ast ) is the optimal
step size moving from y(z\ast ) in the direction of pk, due to the global optimality of z\ast 

in Uk+1. It follows from Lemma 4 that

\rho (z\ast ) - \rho (y(z\ast )) \leq  - \scrO (sin2 \theta y(z\ast ))\scrO 
\bigl( 
cos2 \angle (pk,\nabla \rho (y(z\ast )))

\bigr) 
,

where the coefficient of the sin2 \theta y(z\ast ) term depends on the quantities b and c defined
in (4.12) involving the search direction pk. On the other hand, as z\ast is the global
minimizer in Uk+1, we have

\rho (z\ast ) - \lambda 1 \leq \rho (xk+1) - \lambda 1 = \scrO (sin2 \theta k+1).(A.11)

Meanwhile, by Lemma 4, we also have

\rho (z\ast ) - \lambda 1 = [\rho (z\ast ) - \rho (y(z\ast ))] + [\rho (y(z\ast )) - \lambda 1](A.12)

=  - \scrO (sin2 \theta y(z\ast ))\scrO 
\bigl( 
cos2 \angle (pk,\nabla \rho (y(z\ast )))

\bigr) 
+\scrO (sin2 \theta y(z\ast )) = \scrO (sin2 \theta y(z\ast )).

It follows that

sin \theta y(z\ast ) \leq \scrO (sin \theta k+1).(A.13)

Given z\ast = y(z\ast ) + \alpha (z\ast )pk, it follows from the triangle inequality that

\| z\ast \| B \leq \| y(z\ast )\| B + | \alpha (z\ast )| \| pk\| B = 1 + | \alpha (z\ast )| .(A.14)

Meanwhile, the B-normalized z\ast is z\ast 

\| z\ast \| B
= 1

\| z\ast \| B
y(z\ast ) + \alpha (z\ast )

\| z\ast \| B
pk, and we can follow

the proof of Lemma 5 to show that | \alpha (z\ast )| 
\| z\ast \| B

= \scrO (sin \theta y(z\ast )) \leq \scrO (sin \theta k+1) due to (A.13).

From (A.14), | \alpha (z\ast )| 
1+| \alpha (z\ast )| \leq 

| \alpha (z\ast )| 
\| z\ast \| B

\leq \scrO (sin \theta k+1), i.e., | \alpha (z\ast )| \leq \scrO (sin \theta k+1).
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Let \alpha \ast 
k be the minimizer of \rho (xk + \alpha pk) and y\ast be the global minimizer in Uk

(note that \alpha \ast 
k \not = \alpha (z\ast ) and y\ast \not = y(z\ast )), which contains all vectors of the form y =

\beta yx0 + \gamma ygy with \| y\| B = \| gy\| B = 1, gy \in Wk, and \rho (y) \leq \rho (x0). Let z = z\ast =
y(z\ast )+\alpha (z\ast )pk, y = y(z\ast ), and \alpha = \alpha (z\ast ) in (A.10), and note that \rho (xk+\alpha (z\ast )pk) \geq 
\rho (xk + \alpha \ast pk) and \rho (y(z\ast )) \geq \rho (y\ast ). Therefore, we have

1

2
\rho (z\ast ) =

1

2
\rho (xk + \alpha (z\ast )pk) +

1

2
(\rho (y(z\ast )) - \rho (xk)) +R3 (\rho (y(z

\ast )), \alpha (z\ast )pk)(A.15)

 - R3 (\rho (xk), \alpha (z
\ast )pk) +\scrO (\alpha (z\ast ) sin2 \theta 0) +\scrO (\alpha (z\ast )2 sin2 \theta 0)

\geq 1

2
\rho (xk + \alpha \ast 

kpk) +
1

2
(\rho (y\ast ) - \rho (xk)) +R3 (\rho (y(z

\ast )), \alpha (z\ast )pk)

 - R3 (\rho (xk), \alpha (z
\ast )pk) +\scrO (\alpha (z\ast ) sin2 \theta 0) +\scrO (\alpha (z\ast )2 sin2 \theta 0)

\geq 1

2
\rho (xk+1) +

1

2
(\rho (y\ast ) - \rho (xk)) +\scrO (sin \theta k+1)\scrO (sin2 \theta 0). (| \alpha (z\ast )| \leq \scrO (sin \theta k+1)).

In the last step above, \rho (xk + \alpha \ast pk) \geq \rho (xk+1) because xk+1 is the minimizer over
span\{ xk, gk, pk - 1\} , whereas pk \in span\{ gk, pk - 1\} . Equivalently,

\rho (xk+1) - \rho (z\ast ) \leq \rho (xk) - \rho (y\ast ) +\scrO (sin \theta k+1)\scrO (sin2 \theta 0).

Proof of Lemma 7. Recall that \widetilde pk = gk  - 
pT
k - 1(A - \rho (xk - 1)B)gk

pT
k - 1(A - \rho (xk - 1)B)pk - 1

pk - 1. Therefore

pTk - 1(A - \rho (xk - 1)B)\widetilde pk
= pTk - 1(A - \rho (xk - 1)B)gk  - pTk - 1(A - \rho (xk - 1)B)gk

pT
k - 1

(A - \rho (xk - 1)B)pk - 1
pTk - 1(A - \rho (xk - 1)B)pk - 1 = 0,

and hence pTk - 1(A - \rho (xk - 1)B)pk = 0. Note that \rho (xk - 1) - \rho (xk) = (\rho (xk - 1) - \lambda 1) - 
(\rho (xk) - \lambda 1) \leq (1 - \=\xi ) (\rho (xk - 1) - \lambda 1) = \scrO (sin2 \theta k - 1), and it follows that

pTk - 1(A - \rho (xk)B)pk = pTk - 1(A - \rho (xk - 1)B)pk + (\rho (xk - 1) - \rho (xk)) p
T
k - 1Bpk

=(\rho (xk - 1) - \rho (xk)) (pk - 1, pk)B = \scrO (sin2 \theta k - 1).

Proof of Lemma 8. At step 2 of Algorithm 2, x2 is extracted from span\{ x1, g1, p0\} ,
where p0 = g0 = Md0 up to a scaling factor. By the local optimality,

r2 \bot g0 and r2 \bot g1.(A.16)

At step 3, we form span\{ x2, g2, p1\} to extract x3 and p2. At step 7 of Algorithm 2, \widetilde p2 =

g2 - pT
1 (A - \rho (x1)B)g2

pT
1 (A - \rho (x1)B)p1

p1, which shows that \| \widetilde p2\| is proportional to \| g2\| and independent

of the scaling of p1. Hence, the normalized search direction p2 can be written as
p2 = \eta 2

\| g2\| \widetilde p2, where \eta 2 is chosen such that \| p2\| B = 1. From Lemma 5, we have

x1 = \beta 01x0 + \gamma 01p0, i.e., p0 = 1
\gamma 01

( - \beta 01x0 + x1), where \gamma 01 = \scrO (sin \theta 0). Therefore

pT0 (A - \rho (x0)B)g2 =
1

\gamma 01

\Bigl[ 
 - \beta 01x

T
0 (A - \rho (x0)B) + xT

1 (A - \rho (x1)B) + (\rho (x1) - \rho (x0))x
T
1 B

\Bigr] 
g2

=
\rho (x1) - \rho (x0)

\gamma 01
xT
1 Bg2 +

1

\gamma 01

\Bigl( 
 - \beta 01r

T
0 + rT1

\Bigr) 
g2 =

(\rho (x1) - \lambda 1) - (\rho (x0) - \lambda 1)

\gamma 01
xT
1 Bg2

+
1

\gamma 01

\Bigl( 
 - \beta 01r

T
0 Mp

(2)
m - 1 ((A - \rho 2B)M) r2 + rT1 Mp

(2)
m - 1 ((A - \rho 2B)M) r2

\Bigr) 
=

\scrO (sin2 \theta 0)

\scrO (sin \theta 0)
xT
1 Bg2 +

1

\gamma 01

\Bigl\{ 
 - \beta 01r

T
0

\Bigl( 
p
(0)
m - 1 (M(A - \rho 0B))M +\scrO (sin \theta 0)

\Bigr) 
r2

+ rT1

\Bigl( 
p
(1)
m - 1 (M(A - \rho 1B))M +\scrO (sin \theta 1)

\Bigr) 
r2
\Bigr\} 
.
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Since M , A, and B are all real symmetric, so is p
(k)
m - 1 (M(A - \rho kB))M . Therefore,

rTk p
(k)
m - 1 (M(A - \rho kB))M = gTk , and hence

pT0 (A - \rho (x0)B)g2

= xT
1 Bg2\scrO (sin \theta 0) +

1

\gamma 01

\Bigl\{ 
 - \beta 01g

T
0 r2 + rT0 r2\scrO (sin \theta 0) + gT1 r2 + rT1 r2\scrO (sin \theta 1)

\Bigr\} 
= \| g2\| \scrO (sin \theta 0) +

1

\scrO (sin \theta 0)

\bigl\{ 
rT0 r2\scrO (sin \theta 0) + rT1 r2\scrO (sin \theta 1)

\bigr\} 
= \| g2\| \scrO (sin \theta 0) + \| r2\| \scrO (sin \theta 0), (note that \| r1\| = \scrO (sin \theta 1) = \scrO (sin \theta 0)),

where we use r2 \bot g0 and r2 \bot g1 from (A.16). This shows that pT0 (A - \rho (x0)B)g2 \leq 
\scrO (sin \theta 0). Also, since pT0 (A  - \rho (x0)B)g2 is proportional to \| g2\| , we simply have
pT0 (A - \rho (x0)B)g2 = \| g2\| \scrO (sin \theta 0). Therefore, by Lemma 7,

pT0 (A - \rho (x0)B)p2 = pT0 (A - \rho (x0)B)
\eta 2

\| g2\| 
\widetilde p2

= pT0 (A - \rho (x0)B)
\eta 2

\| g2\| 

\biggl\{ 
g2  - 

pT1 (A - \rho (x1)B)g2
pT1 (A - \rho (x1)B)p1

p1

\biggr\} 
=

\eta 2
\| g2\| 

\biggl\{ 
pT0 (A - \rho (x0)B)g2  - 

pT1 (A - \rho (x1)B)g2
pT1 (A - \rho (x1)B)p1

\Bigl[ 
pT0 (A - \rho (x0)B)p1

\Bigr] \biggr\} 
=

\eta 2
\| g2\| 

\bigl( 
\| g2\| \scrO (sin \theta 0) + \| g2\| \scrO (sin2 \theta 0)

\bigr) 
= \scrO (sin \theta 0).

Similarly, using a slightly different shift in the above relation, we have

pT2 (A - \rho (x2)B)p0 = pT0 (A - \rho (x0)B)p2 + (\rho (x0) - \rho (x2)) p
T
0 Bp2(A.17)

= \scrO (sin \theta 0) + ((\rho (x0) - \lambda 1) - (\rho (x2) - \lambda 1)) (p0, p2)B

= \scrO (sin \theta 0) +
\bigl( 
\scrO (sin2 \theta 0) - \scrO (sin2 \theta 2)

\bigr) 
(p0, p2)B = \scrO (sin \theta 0).

Proof of Lemma 9. The proof is done by contradiction. Assume that lim\theta 0\rightarrow 0 cos
\angle (rk,Wk) exists but is not zero. Then there is a vector u \in Uk such that lim\theta 0\rightarrow 0 cos
\angle (rk, u) = \delta < 0, i.e., u is a descent direction at xk. We have shown in Lemma 4 that

\rho (xk + \alpha \ast u) - \rho (xk) \leq  - \scrO (sin2 \theta k)\scrO 
\bigl( 
cos2 \angle (u, rk)

\bigr) 
=  - \scrO (sin2 \theta k).

Since y\ast is the global minimizer in Uk and xk+\alpha \ast u \in Uk, \rho (y
\ast ) \leq \rho (xk+\alpha \ast u) \leq \rho (xk).

As a result, we have

lim
\theta 0\rightarrow 0

\rho (xk) - \rho (y\ast )

\rho (xk) - \lambda 1
\geq lim

\theta 0\rightarrow 0

\rho (xk) - \rho (xk + \alpha \ast u)

\rho (xk) - \lambda 1
\geq lim

\theta 0\rightarrow 0

\scrO (sin2 \theta k)
\scrO (sin2 \theta k)

= \scrO (1),

meaning that xk does not satisfy the global quasi optimality condition.
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